Team:Harvard/Parts

From 2008.igem.org

(Difference between revisions)
(heat sensitive ci)
(General overview of QPIs)
Line 65: Line 65:
==General overview of QPIs==
==General overview of QPIs==
 +
///***NOTE THIS WILL BE MOVED TO PROJECT>OVERVIEW***///

Revision as of 03:59, 29 October 2008



Parts Submitted to Registry

Short intro

See [http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2008&group=Harvard list] of all parts we submitted.

Contents

\\******change subsection headers*******\\

General overview of QPIs

///***NOTE THIS WILL BE MOVED TO PROJECT>OVERVIEW***///


//EDIT CAPTION//

General overview of mtrB

Many genes are involved in Shewanella’s complex respiratory system (Heidelberg et al. 2002). We focused on mtrB, a 679-amino-acid-long outer membrane protein thought to be involved in the binding of metals and the localization of outer membrane cytochromes during reduction (Bretschger et al. 2007). It is unfortunately toxic in E. coli (Saffarini). Bretschger et al. recently characterized the role of mtrB in anaerobic respiration of Shewanella by looking at the effects of knock-out and complementation of mtrB on the electrical output of Shewanella. It was found that the strain which lacked mtrB produced less than 20% of the current generated by the wild type strain. In complemented strains, where mtrB is expressed constitutively under the control of the lacZ promoter in the knock-out strain, the phenotype was rescued with a similar amount of current being produced to that of the wild type (Bretschger et al. 2007). Not only does this experiment demonstrate the importance of mtrB in reduction in Shewanella, it also suggests a mechanism by which this electrical output could be controlled. Transforming plasmids containing mtrB under the control of an inducible promoter into mtrB knock out Shewanella, would conceivably create a strain of Shewanella which could increase its electrical output in response to the turning-on of the promoter controlling mtrB expression. The creation of a strain with an inducible electrical output could have important applications in biotechnology by creating a system which couples the ability of Shewanella to respond to a diverse array of stimuli with the speed and ubiquity of electricity.

lac complete system (will be moved to separate page)

complete description


BBa_K098984

QPIs that we did not use with mtrB

lac

short description, Amy's data on separate page: put most details here: Team:Harvard/lacsys

tet

heat sensitive cI

This system uses a a temperature sensitive variant of cI lambda to regulate the lambda promoter.

short description, Amy's data on separate page: put most details here: Team:Harvard/citssys