Team:Edinburgh/Plan
From 2008.igem.org
(Difference between revisions)
(→Starch biosynthesis) |
|||
Line 1: | Line 1: | ||
- | + | ==References== | |
- | = | + | ===Cellulose degradation=== |
- | + | * Chaudhary, P., Kumar, N.N., Deobagkar, D.N. 1997. The glucanases of ''Cellulomonas''. Biotechnology Advances '''15'''(2), 315-331. | |
- | + | * Lam, T.L., Wong, R.S.C., Wong, W.K.R. 1997. Enhancement of extracellular production of a ''Cellulomonas fimi'' exoglucanase in ''Escherichia coli'' by the reduction of promoter strength. Enzyme and Microbial Technology '''20''', 482-488. (An approach to achieving secretion of cellulose-degrading enzymes in ''E. coli''). | |
- | + | * Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews '''66''', 506-577. (An excellent review by the leading researchers in the field). | |
- | + | * Stoll, D. 2001. Mapping of genes encoding glycoside hydrolases on the chromosome of ''Cellulomonas fimi''. Canadian Journal of Microbiology '''47''', 1063-1067. (Some information on the genome size and known cellulose-degrading enzymes of the cellulolytic bacterium ''C. fimi''). | |
- | + | * Tomme, P., Kwan, E., Gilkes, N.R., Kilburn, D.G., and Warren, R.A.J. 1996. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of Bacteriology '''178''', 4216-4223. (A potentially useful enzyme from ''C. fimi'', which we unfortunately did not have time to pursue in this project, as it contains multiple forbidden restriction sites; maybe something to look at for the future). | |
- | ''' | + | * Wilson, D.B. 2008. Three Microbial Strategies for Plant Cell Wall Degradation. Annals of the New York Academy of Sciences '''1125''', 289-297. |
- | + | * Xie, G., Bruce, D.C., Challacombe, J.F., Chertkov, O., Detter, J.C., Gilna, P., Han, C.S., Lucas, S., Misra, M., Myers, G.L., Richardson, P., Tapia, R., Thayer, N., Thompson, L.S., Brettin, T.S., Henrissat, B., Wilson, D.B., McBride, M.J. 2007. Genome Sequence of the Cellulolytic Gliding Bacterium ''Cytophaga hutchinsonii''. Applied Environmental Microbiology '''73'''(11), 3536-3546. | |
- | + | === Bacterial cell lysis === | |
- | + | ||
- | + | ||
- | + | * Barnard. A., Wolfe, A. and Busby, S. 2004. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology '''7'''(2), 102-108. | |
- | + | * Berka, R.M., Hahn, J., Albano, M., Draskovic, I., Persuh, M., Cui, X., Sloma, A., Widner, W. and Dubnau, D. 2002. Microarray analysis of the ''Bacillus subtilis'' K-state: genome-wide expression changes dependent on ComK. Molecular Microbiology '''43'''(5), 1331-1345. (Discription of a transcription factor that activates its own expression in ''B. subtilis''.) | |
- | + | * Rhodius, V.A. and Busby, S.J.W. 1998. Positive activation of gene expression. Current Opinion in Microbiology '''1'''(2), 152-159. | |
- | + | * Snyder, L. and Champness, W. 2007. Molecular Genetics of Bacteria (3rd Edition). ASM Press | |
- | + | * Young, R., Wang, I.-N. and Roof, W.D. 2000. Phages will out: strategies of host cell lysis. Trends in Microbiology '''8'''(3), 120-128. | |
- | === | + | ===Glycogen overproduction=== |
- | + | * Damotte M., Cattanéo, J., Sigal, N. and Puig, J. 1968. Mutants of ''Escherichia coli'' K12 altered in theiry ability to store glycogen. Biochemical and Biophysical Research Communications '''32'''(6), 916-920. (Description of a quantitative glycogen assay.) | |
- | + | ||
- | + | ||
- | + | * Dedhia, N., Chen, W., and Bailey, J.E. 1996. Design of expression systems for metabolic engineering: coordinated synthesis and degradation of glycogen. Biotechnology and Bioengineering '''55''', 419-426. | |
- | + | * Eydallin, G., Viale, A.M., Moran-Zorzano, M.T., Munoz, F.J., Montero, M., Baroja-Fernandez, E., and Pozueta-Romero, J. 2007. Genome-wide screening of genes affecting glycogen metabolism in ''Escherichia coli'' K-12. FEBS Letters '''581''', 2947-2953. | |
- | + | * Fernandez-Banares, I., Clotet, J., Arino, J., and Guinovart, J.J. 1991. Glycogen hyperaccumulation in ''Saccharomyces cerevisiae RAS2'' mutant - a biochemical study. FEBS Letters '''290''', 38-42. (A potential method for overproducing glycogen in yeast, if we ultimately decided to go down that route rather than using a bacterial host). | |
- | + | * Govons, S., Vinopal, R., Ingraham, J. and Preiss, J. 1969. Isolation of mutants of ''Escherichia coli'' B altered in their ability to synthesize glycogen. Journal of Bacteriology '''97'''(2), 970-972. (Description of an assay to quantify glycogen production by ''E. coli''.) | |
- | + | * Leung, P., Lee, Y.M., Greenberg, E., Esch, K., Boylan, S., and Preiss, J. 1986. Cloning and expression of the ''Escherichia coli glgC'' gene from a mutant containing an ADP-glucose pyrophsophorylase with altered allosteric properties. Journal of Bacteriology '''167''', 82-88. (Initial description of the ''glgC16'' mutant.) | |
- | + | * Meyer, C.R., Bork, J.A., Nadler, S.N., Yirsa, J. and Preiss, J. 1998. Site-Directed Mutagenesis of a Regulatory Site of ''Escherichia coli'' ADP-Glucose Pyrophosphorylase: The Role of Residue 336 in Allosteric Behaviour. Archives of Biochemistry and Biophysics '''351'''(1), 152-159. (Further description of the ''glgC16'' mutant.) | |
- | + | ||
- | * | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
===Starch biosynthesis=== | ===Starch biosynthesis=== | ||
Line 92: | Line 68: | ||
* Lucker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W.A., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.H. 2002. Monoterpene biosynthesis in lemon (''Citrus limon''). European Journal of Biochemistry '''269''', 3160-3171. (Functional expression of the LIMS1 gene in ''E. coli''). | * Lucker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W.A., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.H. 2002. Monoterpene biosynthesis in lemon (''Citrus limon''). European Journal of Biochemistry '''269''', 3160-3171. (Functional expression of the LIMS1 gene in ''E. coli''). | ||
+ | |||
* Reiling, K.K., Yoshikuni, Y., Martin, V.J.J., Newman, J., Bohlmann, J., and Keasling, J.D. 2004. Mono and diterpene production in ''Escherichia coli''. Biotechnology and Bioengineering '''87''', 200-212. (Generation of various monoterpenes, including limonene, in ''E. coli'' and methods for detection). | * Reiling, K.K., Yoshikuni, Y., Martin, V.J.J., Newman, J., Bohlmann, J., and Keasling, J.D. 2004. Mono and diterpene production in ''Escherichia coli''. Biotechnology and Bioengineering '''87''', 200-212. (Generation of various monoterpenes, including limonene, in ''E. coli'' and methods for detection). |
Revision as of 19:22, 29 October 2008
Contents |
References
Cellulose degradation
- Chaudhary, P., Kumar, N.N., Deobagkar, D.N. 1997. The glucanases of Cellulomonas. Biotechnology Advances 15(2), 315-331.
- Lam, T.L., Wong, R.S.C., Wong, W.K.R. 1997. Enhancement of extracellular production of a Cellulomonas fimi exoglucanase in Escherichia coli by the reduction of promoter strength. Enzyme and Microbial Technology 20, 482-488. (An approach to achieving secretion of cellulose-degrading enzymes in E. coli).
- Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 66, 506-577. (An excellent review by the leading researchers in the field).
- Stoll, D. 2001. Mapping of genes encoding glycoside hydrolases on the chromosome of Cellulomonas fimi. Canadian Journal of Microbiology 47, 1063-1067. (Some information on the genome size and known cellulose-degrading enzymes of the cellulolytic bacterium C. fimi).
- Tomme, P., Kwan, E., Gilkes, N.R., Kilburn, D.G., and Warren, R.A.J. 1996. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of Bacteriology 178, 4216-4223. (A potentially useful enzyme from C. fimi, which we unfortunately did not have time to pursue in this project, as it contains multiple forbidden restriction sites; maybe something to look at for the future).
- Wilson, D.B. 2008. Three Microbial Strategies for Plant Cell Wall Degradation. Annals of the New York Academy of Sciences 1125, 289-297.
- Xie, G., Bruce, D.C., Challacombe, J.F., Chertkov, O., Detter, J.C., Gilna, P., Han, C.S., Lucas, S., Misra, M., Myers, G.L., Richardson, P., Tapia, R., Thayer, N., Thompson, L.S., Brettin, T.S., Henrissat, B., Wilson, D.B., McBride, M.J. 2007. Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii. Applied Environmental Microbiology 73(11), 3536-3546.
Bacterial cell lysis
- Barnard. A., Wolfe, A. and Busby, S. 2004. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology 7(2), 102-108.
- Berka, R.M., Hahn, J., Albano, M., Draskovic, I., Persuh, M., Cui, X., Sloma, A., Widner, W. and Dubnau, D. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Molecular Microbiology 43(5), 1331-1345. (Discription of a transcription factor that activates its own expression in B. subtilis.)
- Rhodius, V.A. and Busby, S.J.W. 1998. Positive activation of gene expression. Current Opinion in Microbiology 1(2), 152-159.
- Snyder, L. and Champness, W. 2007. Molecular Genetics of Bacteria (3rd Edition). ASM Press
- Young, R., Wang, I.-N. and Roof, W.D. 2000. Phages will out: strategies of host cell lysis. Trends in Microbiology 8(3), 120-128.
Glycogen overproduction
- Damotte M., Cattanéo, J., Sigal, N. and Puig, J. 1968. Mutants of Escherichia coli K12 altered in theiry ability to store glycogen. Biochemical and Biophysical Research Communications 32(6), 916-920. (Description of a quantitative glycogen assay.)
- Dedhia, N., Chen, W., and Bailey, J.E. 1996. Design of expression systems for metabolic engineering: coordinated synthesis and degradation of glycogen. Biotechnology and Bioengineering 55, 419-426.
- Eydallin, G., Viale, A.M., Moran-Zorzano, M.T., Munoz, F.J., Montero, M., Baroja-Fernandez, E., and Pozueta-Romero, J. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Letters 581, 2947-2953.
- Fernandez-Banares, I., Clotet, J., Arino, J., and Guinovart, J.J. 1991. Glycogen hyperaccumulation in Saccharomyces cerevisiae RAS2 mutant - a biochemical study. FEBS Letters 290, 38-42. (A potential method for overproducing glycogen in yeast, if we ultimately decided to go down that route rather than using a bacterial host).
- Govons, S., Vinopal, R., Ingraham, J. and Preiss, J. 1969. Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen. Journal of Bacteriology 97(2), 970-972. (Description of an assay to quantify glycogen production by E. coli.)
- Leung, P., Lee, Y.M., Greenberg, E., Esch, K., Boylan, S., and Preiss, J. 1986. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADP-glucose pyrophsophorylase with altered allosteric properties. Journal of Bacteriology 167, 82-88. (Initial description of the glgC16 mutant.)
- Meyer, C.R., Bork, J.A., Nadler, S.N., Yirsa, J. and Preiss, J. 1998. Site-Directed Mutagenesis of a Regulatory Site of Escherichia coli ADP-Glucose Pyrophosphorylase: The Role of Residue 336 in Allosteric Behaviour. Archives of Biochemistry and Biophysics 351(1), 152-159. (Further description of the glgC16 mutant.)
Starch biosynthesis
- Ball, S.G. and Morell, M.K. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Reviews in Plant Biology 54, 207-233. (A comprehensive review of the state of knowledge regarding glycogen and starch biosynthesis in bacteria and plants).
- Delatte, T., Trevisan, M., Parker, M.L., and Zeeman, S.C. 2005. Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant Journal 41, 815-830. (Probable role of the heteromeric isoamylase in converting a glycogen-like precursor to starch).
- Wattebled, F., Dong, Y., Dumez, S., Delvalle, D., Planchot, R., Berbezy, P., Vyas, D., Colonna, P., Chatterjee, M., Ball, S., and D'Hulst, C. 2005. Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiology 138, 184-195. (Probable role of the heteromeric isoamylase in converting a glycogen-like precursor to starch).
- Kubo, A., Rahman, S., Utsumi, Y., Li, Z.Y., Mukai, Y., Yamamoto, M., Ugaki, M., Harada, K., Satoh, H., Konik-Rose, C., Morell, M., and Nakamura, Y. 2005. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 in gene in supports a direct role for isoamylase1 amylopectin biosynthesis. Plant Physiology 137, 45-36. (Probable role of the heteromeric isoamylase in converting a glycogen-like precursor to starch).
- Utsumi, Y., and Nakamura, Y. 2006. Structural and enzymatic characterization of the isoamylase1 homo-oligomer and the isoamylase1-isoamylase2 hetero-oligomer from rice endosperm. Planta 225, 75-87. (Expression of functional isoamylase subunits in E. coli shows that this enzyme can be expressed in a functional form in bacteria).
Synthesis of carotenoids
- Sandmann, G. 2006. Production of carotenoids by gene combination in Escherichia coli. pages 143-153 in 'Food Biotechnology', 2nd edition, eds. K. Shetty, G. Paliyath, A. Pometto and R.E. Levin, CRC Press, Taylor & Francis group, Boca Raton, FL. (A useful review).
- Misawa, N., Nakagawa, N., Kobayashi, K., Yamano, S., Nakamura, K., and Harashima, K. 1990. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. Journal of Bacteriology 172, 6704-612. (Demonstration of the functional expression of the Pantoea ananatis (= Erwinia uredovora) genes in E. coli)
- Kang, M.J., Lee, Y.M., Yoon, S.H., Kim, J.H., Ock, S.W., Jung, K.H., Shin, Y.C., Keasling, J.D., and Kim, S.W. 2005. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. biotechnology and Bioengineering 91, 636-642 (role of dxs and appY in increasing carotenoid biosynthesis).
Synthesis of limonene and other terpenes
- Lucker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W.A., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.H. 2002. Monoterpene biosynthesis in lemon (Citrus limon). European Journal of Biochemistry 269, 3160-3171. (Functional expression of the LIMS1 gene in E. coli).
- Reiling, K.K., Yoshikuni, Y., Martin, V.J.J., Newman, J., Bohlmann, J., and Keasling, J.D. 2004. Mono and diterpene production in Escherichia coli. Biotechnology and Bioengineering 87, 200-212. (Generation of various monoterpenes, including limonene, in E. coli and methods for detection).