Team:iHKU/design

From 2008.igem.org

(Difference between revisions)
 
(27 intermediate revisions not shown)
Line 16: Line 16:
font-size: 13px;
font-size: 13px;
}
}
-
p:first-letter
+
p.special:first-letter
{
{
color:#990000;
color:#990000;
Line 138: Line 138:
}
}
</style>
</style>
 +
  <style> 
 +
  <!-- 
 +
  a:link 
 +
  { 
 +
  color:#3366CC;
 +
  text-decoration:none 
 +
  } 
 +
  a:visited 
 +
  {
 +
  color:#FF6600;
 +
  text-decoration:none 
 +
  } 
 +
  a:hover 
 +
  { 
 +
  color:#66CCFF;text-decoration:underline 
 +
  } 
 +
  --> 
 +
  </style>
<div id="main">
<div id="main">
<div id="up1">
<div id="up1">
-
  <table width="100%" border="0">
+
<table width="100%" border="0">
         <tr>
         <tr>
-
           <th width="50%" scope="row">&nbsp;</th>
+
           <th width="61%" scope="row">&nbsp;</th>
-
           <td width="50%"><span class="style3"><a href="http://www.hku.hk/">The University of Hong Kong</a> | <a href="http://www.hku.hk/facmed/">The Faculty of Medicine</a></span></td>
+
           <td width="39%"><span class="headline"><a href="http://www.hku.hk">The University of Hong Kong</a> | <a href="http://www.hku.hk/facmed/">Li Ka Shing Faculty of Medicine</a></span></td>
         </tr>
         </tr>
       </table>
       </table>
Line 176: Line 194:
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="/Team:iHKU/modelling"><img src="/wiki/images/9/9f/Button_model.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/modeling"><img src="/wiki/images/9/9f/Button_model.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
Line 191: Line 209:
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="/Team:iHKU/design"><img src="/wiki/images/6/6c/Button_devices.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/device"><img src="/wiki/images/6/6c/Button_devices.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
Line 233: Line 251:
                       <th width="10%">&nbsp;</th>
                       <th width="10%">&nbsp;</th>
                         <td width="80%" align="left"><h1 class="style7">Design</h1>
                         <td width="80%" align="left"><h1 class="style7">Design</h1>
-
                           <h3 class="style7">1. Our Aim</h3>
+
                          <ul>
-
                           <p>We endeavor our strains to grow into  patterns by arranging themselves in a synchronous, self-organised manner, “just  as in organisms in nature which all are able to develop shapes and patterns.”  Implementing such idea on bacteria sheds light to a mechanism involving  cell-cell communication that would produce a key response, predominately a  respond affecting cell motility. The characteristics of the response logically  should be critical towards the formation overall pattern. </p>
+
                            <li class="style18"><a href="#1">Our Aim</a></li>
-
                           <h3><strong>2. Chassis  selection</strong></h3>
+
                            <li class="style18"><a href="#2">Chassis  selection</a></li>
-
                           <p>Past chemotaxis  studies have provided the molecular basis of cellular motility regulation, <em>Escherichia coli</em> and Bacillus subtilis  are notably the well-understood strains which are ideal to be the chassis of our  designed genetic circuit. We chose <em>E.coli</em> as our chassis for the project reasoning that cell-cell communications will  require the use of a signaling molecule, which are often density related. <em>E.coli</em> is known to be less motile than <em>Bacillus</em> in terms of speed, thus would  ease the accumulation of the signaling molecule. We hope the subsequent pattern  generated by using <em>E.coli</em> as chassis  would be finer and more interesting.</p>
+
                            <li class="style18"><a href="#3">Genetic  Circuit Design</a></li>
-
                           <p>(Diagrams &amp; picture to be added)</p>
+
                            <li class="style18"><a href="#4">Plasmids and strains</a></li>
-
                           <h3><strong>3. Genetic  Circuit Design</strong></h3>
+
                          </ul>
-
                           <p>An On-Off motility design is desired as the  response to cell-cell communication. Based on the pioneer work (Topp &amp;  Gallivan 2006) shows the motility can be abolished by knocking out the <strong><em>cheZ</em></strong>gene, and can be restored by subsequent  re-introduction of the <em>cheZ</em> gene  under a controllable promoter back into the host.<br />
+
                           <h3 class="style7">&nbsp;</h3>
 +
                          <h3 class="style7"><strong><a name="1" id="1"></a></strong>Our Aim</h3>
 +
                           <p class="special">We endeavor our strains to grow into  patterns by arranging themselves in a synchronous, self-organised manner, “just  as in organisms in nature which all are able to develop shapes and patterns.”  Implementing such idea on bacteria sheds light to a mechanism involving  cell-cell communication that would produce a key response, predominately a  respond affecting cell motility. The characteristics of the response logically  should be critical towards the formation overall pattern. </p>
 +
                          <p align="right"><a href="#top">[Back to Top]</a></p>
 +
                           <h3><strong><a name="2" id="2"></a>Chassis  selection</strong></h3>
 +
                           <p class="special">Past chemotaxis  studies have provided the molecular basis of cellular motility regulation, <em>Escherichia coli</em> and Bacillus subtilis  are notably the well-understood strains which are ideal to be the chassis of our  designed genetic circuit. We chose <em>E.coli</em> as our chassis for the project reasoning that cell-cell communications will  require the use of a signaling molecule, which are often density related. <em>E.coli</em> is known to be less motile than <em>Bacillus</em> in terms of speed, thus would  ease the accumulation of the signaling molecule. We hope the subsequent pattern  generated by using <em>E.coli</em> as chassis  would be finer and more interesting.</p>
 +
                           <p align="right"><a href="#top">[Back to Top]</a></p>
 +
                          <p></p>
 +
                           <h3><strong><a name="3" id="3"></a>Genetic  Circuit Design</strong></h3>
 +
                           <p class="special">An On-Off motility design is desired as the  response to cell-cell communication. Based on the pioneer work [3] shows the motility can be abolished by knocking out the <strong><em>cheZ</em></strong> gene, and can be restored by subsequent  re-introduction of the <em>cheZ</em> gene  under a controllable promoter back into the host.<br />
We designed two  DNA constructs whose cheZ expression level would be sensitive to the  concentration of AHL (Acetyl homoserine lactone). One would become <strong>motile</strong> in the presence of AHL, while  the other one be become <strong>immotile </strong>under  the same condition. Since concentration of AHL is proportional to <strong>cell density</strong>, the motility of our strains  would be dependent on local cell density.</p>
We designed two  DNA constructs whose cheZ expression level would be sensitive to the  concentration of AHL (Acetyl homoserine lactone). One would become <strong>motile</strong> in the presence of AHL, while  the other one be become <strong>immotile </strong>under  the same condition. Since concentration of AHL is proportional to <strong>cell density</strong>, the motility of our strains  would be dependent on local cell density.</p>
-
                           <p align="center"><img src="/wiki/images/4/44/Design_pic1.png" width="525" height="275" /></p>
+
                           <p align="center"><img src="https://static.igem.org/mediawiki/2008/6/60/Plux1.gif" width="565" height="175" /></p>
 +
                          <p align="center"><img src="https://static.igem.org/mediawiki/2008/f/f3/Plux2.gif" width="565" height="175" /></p>
                           <p align="center">&nbsp;</p>
                           <p align="center">&nbsp;</p>
                           <p>Predicted Pattern:</p>
                           <p>Predicted Pattern:</p>
 +
                          <p>According to the results of our model, we got the patterns with ring-like low cell density regions, if initially we dropped a small volume of cell onto the center of the plate. (<a href="https://2008.igem.org/Team:iHKU/modeling">Detials to chick here</a>)</p>
                           <h1 align="center"><img src="/wiki/images/thumb/1/1e/Design_pic3.png/800px-Design_pic3.png" width="465" height="230" /></h1>
                           <h1 align="center"><img src="/wiki/images/thumb/1/1e/Design_pic3.png/800px-Design_pic3.png" width="465" height="230" /></h1>
-
                           <p>&nbsp;</p>
+
                           <p align="center">&nbsp;</p>
-
                           <h1>Plasmids and strains</h1>
+
                           <p align="right"><a href="#top">[Back to Top]</a></p>
-
                        </td>
+
                          <h3><strong><a name="4" id="4"></a>Plasmids and strains</strong></h3>
 +
                          <p><img src="https://static.igem.org/mediawiki/igem.org/6/62/Design_tab.gif" width="560" height="742" /></p>
 +
                          <p align="right"><a href="#top">[Back to Top]</a></p>
 +
                          <h3><strong><a name="5" id="5"></a>Reference</strong></h3>
 +
                          <ol>
 +
                            <li>You L, Cox RS 3rd, Weiss R,  Arnold FH. Programmed population control by cell-cell communication and  regulated killing. Nature. 2004, 428: 868-71</li>
 +
                            <li>Basu S, Gerchman Y, Collins CH,  Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern  formation. Nature. 2005, 434: 1130-4</li>
 +
                            <li>Topp S, Gallivan JP. Guiding  bacteria with small molecules and RNA. J Am Chem Soc. 2007, 129: 6807-11</li>
 +
                          </ol>
 +
                                                    <p>&nbsp;</p></td>
                         <td width="10%">&nbsp;</td>
                         <td width="10%">&nbsp;</td>
                       </tr>
                       </tr>
Line 254: Line 292:
                             <tr>
                             <tr>
                               <th width="2%" scope="row">&nbsp;</th>
                               <th width="2%" scope="row">&nbsp;</th>
-
                               <td width="95%"><div align="center"><img src="/wiki/images/5/5d/Design_tab1.png" width="538" height="551" /><img src="/wiki/images/7/7d/Design_tab2.png" width="538" height="430" /></div></td>
+
                               <td width="95%"><div align="center">
 +
                                <p>&nbsp;</p>
 +
                                <p align="right"><a href="#top">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</br></a></p>
 +
                                </div></td>
             </tr>
             </tr>
-
                          </table>         
+
          </table>         
         </div>
         </div>
                  
                  
Line 266: Line 307:
         </div>
         </div>
     </div>
     </div>
 +
</div>
</div>
</html>
</html>
<html>
<html>

Latest revision as of 20:26, 29 October 2008

 

Design

 

Our Aim

We endeavor our strains to grow into patterns by arranging themselves in a synchronous, self-organised manner, “just as in organisms in nature which all are able to develop shapes and patterns.” Implementing such idea on bacteria sheds light to a mechanism involving cell-cell communication that would produce a key response, predominately a respond affecting cell motility. The characteristics of the response logically should be critical towards the formation overall pattern.

[Back to Top]

Chassis selection

Past chemotaxis studies have provided the molecular basis of cellular motility regulation, Escherichia coli and Bacillus subtilis are notably the well-understood strains which are ideal to be the chassis of our designed genetic circuit. We chose E.coli as our chassis for the project reasoning that cell-cell communications will require the use of a signaling molecule, which are often density related. E.coli is known to be less motile than Bacillus in terms of speed, thus would ease the accumulation of the signaling molecule. We hope the subsequent pattern generated by using E.coli as chassis would be finer and more interesting.

[Back to Top]

Genetic Circuit Design

An On-Off motility design is desired as the response to cell-cell communication. Based on the pioneer work [3] shows the motility can be abolished by knocking out the cheZ gene, and can be restored by subsequent re-introduction of the cheZ gene under a controllable promoter back into the host.
We designed two DNA constructs whose cheZ expression level would be sensitive to the concentration of AHL (Acetyl homoserine lactone). One would become motile in the presence of AHL, while the other one be become immotile under the same condition. Since concentration of AHL is proportional to cell density, the motility of our strains would be dependent on local cell density.

 

Predicted Pattern:

According to the results of our model, we got the patterns with ring-like low cell density regions, if initially we dropped a small volume of cell onto the center of the plate. (Detials to chick here)

 

[Back to Top]

Plasmids and strains

[Back to Top]

Reference

  1. You L, Cox RS 3rd, Weiss R, Arnold FH. Programmed population control by cell-cell communication and regulated killing. Nature. 2004, 428: 868-71
  2. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature. 2005, 434: 1130-4
  3. Topp S, Gallivan JP. Guiding bacteria with small molecules and RNA. J Am Chem Soc. 2007, 129: 6807-11