Team:Paris/Modeling/

From 2008.igem.org

(Difference between revisions)
(New page: <html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta http-equiv=Content-Type conte...)
 
(4 intermediate revisions not shown)
Line 1: Line 1:
 +
{{Paris/Menu}}
 +
==Estimation of the parameters==
 +
<html xmlns:o="urn:schemas-microsoft-com:office:office"
<html xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns:w="urn:schemas-microsoft-com:office:word"
Line 241: Line 244:
EN-GB'><span style='mso-spacerun:yes'>    </span>%<span class=GramE>The</span>
EN-GB'><span style='mso-spacerun:yes'>    </span>%<span class=GramE>The</span>
-
heart f the problem is to minimize the distance between a<o:p></o:p></span></p>
+
heart of the problem is to minimize the distance between a<o:p></o:p></span></p>
<p class=MsoPlainText><span lang=EN-GB style='color:#339966;mso-ansi-language:
<p class=MsoPlainText><span lang=EN-GB style='color:#339966;mso-ansi-language:
Line 322: Line 325:
</html>
</html>
 +
 +
|}<br style="clear:both" />

Latest revision as of 14:23, 3 September 2008

Estimation of the parameters

function Popt=findparam

function Popt=findparam

 

 

clear, close all

 

%Parameters

Tmax=100; %Time of the simulation

Npoints=40; %Number of points available. We assume for the tests that they are regularly distant.

x=1:Tmax/Npoints:Tmax;%Definition of the inducer vector.

 

%The following function provides a Hill function, given a X vector and

%some parameter that characterizes it.

function y= Hill(x,K,Vmax,n)

l=length(x);

for i=1:l

if K<0 s(i)=K; else s(i)=x(i); end

y(i)=(Vmax*(s(i)^n))/((x(i)^n)+(K^n));

end

end

 

%Then, we want to introduce some noise in the data obtained, in order to

%simulate biological results.

function y = NoisyHill(x,K,Vmax,n)

y=Hill(x,K,Vmax,n);

for i=1:length(x)

y(i)=random('normal',y(i),Vmax/20);

end

end

 

%Finally, we create a 'noisy Hill' vector that will be considered as

%biological data.

function set = genset

K=30;

Vmax=2;

n=3;

set=NoisyHill([1:Tmax/Npoints:Tmax],K,Vmax,n);

end

set=genset();

 

%The heart of the problem is to minimize the distance between a

%deterministic Hill function and the noisy one obtained. 'Toopt' is

%just the criteria to minimize.

function y = toopt(x,P)

y=Hill(x,10*P(1),P(2),P(3))-set;

end

%These lines use a Matlab function to carry out the optimization process

options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e7,'TolFun',1e-5);

Popt=lsqnonlin(@(P)toopt(x,P),[0.1,1,1],[0,0,0],[5,10,10],options);

Popt=Popt(:);

 

%In order to see the results, we plot both the noisy curve and the

%estimated one.

plot(set)

hold on

plot(Hill(x,10*Popt(1),Popt(2),Popt(3) ),'r');

legend('Experimental Hill function','Estimation of the experimental hill function');

gtext('NPoints=40, Standard Deviation=1/10');

xlabel('Concentration of X');

ylabel('Rate of Y production');

end