|
|
(25 intermediate revisions not shown) |
Line 1: |
Line 1: |
- | [[Image:f1a.jpg|thumb]] In the '''exponential phase of growth''', at the steady state, we have
| + | {{Paris/Menu}} |
| | | |
- | <center>[[Image:tetReqtot.jpg]]</center> | + | {{Paris/Header|Method & Algorithm : ƒ1}} |
| + | <center> = act_''pTet'' </center> |
| + | <br> |
| | | |
- | so, with
| + | [[Image:f1a.jpg|thumb|Specific Plasmid Characterisation for ƒ1]] |
| | | |
- | <center>[[Image:f1expr.jpg]]</center>
| + | According to the characterization plasmid (see right) and to our modeling, in the '''exponential phase of growth''', at the steady state, the experiment would give us |
| | | |
- | that gives, after reducing the expression
| + | [[Image:f1expr.jpg|center]] |
| | | |
- | <center>[[Image:f1exprredu.jpg]]</center>
| + | and at steady-state and in the exponential phase of growth, we expect : |
| | | |
- | with the previous expression of [TetR]<sub>eq</sub>
| + | [[Image:ExprptetF0.jpg|center]] |
| | | |
- | <center>[[Image:f1exprreduf0.jpg]]</center>
| + | we use this analytical expression to determine the parameters : |
| | | |
- | so, finally, if we use a ''calculated'' value of [TetR] (by using the expression of ƒ0 for instance, or by introducing a value given by ''tetR'' after an other "caracterised promoter")
| + | <div style="text-align: center"> |
| + | {{Paris/Toggle|Table of Values|Team:Paris/Modeling/More_f1_Table}} |
| + | </div> |
| | | |
- | <center>[[Image:f1exprCalc.jpg]]</center> | + | <div style="text-align: center"> |
| + | {{Paris/Toggle|Algorithms|Team:Paris/Modeling/More_f1_Algo}} |
| + | </div> |
| | | |
| + | Also, this experiment will enable us to know the expression of ƒ1 : |
| | | |
- | {|border="1" style="text-align: center"
| + | [[Image:ExprF1.jpg|center]] |
- | |param
| + | |
- | |signification
| + | |
- | |unit
| + | |
- | |value
| + | |
- | |-
| + | |
- | |[expr(pTet)]
| + | |
- | |expression rate of <br> pTet '''with RBS E0032'''
| + | |
- | |nM.s<sup>-1</sup>
| + | |
- | |see [[Team:Paris/Modeling/Programs|"findparam"]] <br> need for 20 measures
| + | |
- | |-
| + | |
- | |γ<sub>GFP</sub>
| + | |
- | |dilution-degradation rate <br> of GFP(mut3b)
| + | |
- | |s<sup>-1</sup>
| + | |
- | |ln(2)/3600
| + | |
- | |-
| + | |
- | |[GFP]
| + | |
- | |GFP concentration at steady-state
| + | |
- | |nM
| + | |
- | |need for 20 measures
| + | |
- | |-
| + | |
- | |(''fluorescence'')
| + | |
- | |value of the observed fluorescence
| + | |
- | |au
| + | |
- | |need for 20 measures
| + | |
- | |-
| + | |
- | |''conversion''
| + | |
- | |conversion ration between <br> fluorescence and concentration
| + | |
- | |nM.au<sup>-1</sup>
| + | |
- | |(1/79.429)
| + | |
- | |}
| + | |
| | | |
- | <br><br>
| + | <br> |
| | | |
- | {|border="1" style="text-align: center"
| + | <center> |
- | |param
| + | [[Team:Paris/Modeling/Implementation| <Back - to "Implementation" ]]| <br> |
- | |signification <br> corresponding parameters in the [[Team:Paris/Modeling/Oscillations#Resulting_Equations|equations]]
| + | [[Team:Paris/Modeling/Protocol_Of_Characterization| <Back - to "Protocol Of Characterization" ]]| |
- | |unit
| + | </center> |
- | |value
| + | |
- | |-
| + | |
- | |β<sub>tet</sub>
| + | |
- | |production rate of pTet '''with RBS E0032''' <br> β<sub>1</sub> | + | |
- | |nM.s<sup>-1</sup>
| + | |
- | |
| + | |
- | |-
| + | |
- | |(K<sub>tet</sub>/{coef<sub>tetR</sub>}<sup>n<sub>tet</sub></sup>)
| + | |
- | |activation constant of pTet <br> K<sub>18</sub> | + | |
- | |nM<sup>n<sub>tet</sub></sup>
| + | |
- | |
| + | |
- | |-
| + | |
- | |n<sub>tet</sub> | + | |
- | |complexation order of pTet<br> n<sub>18</sub>
| + | |
- | |no dimension
| + | |
- | |
| + | |
- | |-
| + | |
- | |K<sub>aTc</sub>
| + | |
- | |complexation constant aTc-TetR <br> K<sub>17</sub>
| + | |
- | |nM<sup>n<sub>aTc</sub></sup>
| + | |
- | |
| + | |
- | |-
| + | |
- | |n<sub>aTc</sub>
| + | |
- | |complexation order aTc-TetR <br> n<sub>17</sub>
| + | |
- | |no dimension
| + | |
- | |
| + | |
- | |}
| + | |
Method & Algorithm : 1
= act_pTet
Specific Plasmid Characterisation for 1
According to the characterization plasmid (see right) and to our modeling, in the exponential phase of growth, at the steady state, the experiment would give us
and at steady-state and in the exponential phase of growth, we expect :
we use this analytical expression to determine the parameters :
↓ Table of Values ↑
param
| signification
| unit
| value
| comments
|
(fluorescence)
| value of the observed fluorescence
| au
|
| need for 20 values with well choosen [aTc]i
|
conversion
| conversion ration between fluorescence and concentration ↓ gives ↓
| nM.au-1
| (1/79.429)
|
|
[GFP]
| GFP concentration at steady-state
| nM
|
|
|
γGFP
| dilution-degradation rate of GFP(mut3b) ↓ gives ↓
| min-1
| 0.0198
| Only dilution : Time Cell Division : 35 min.
|
1
| activity of pTet with RBS E0032
| nM.min-1
|
|
|
param
| signification corresponding parameters in the equations
| unit
| value
| comments
|
βtet
| basal activity of pTet with RBS E0032 β16
| nM.min-1
|
|
|
(Ktet/{coeftetR})
| activation constant of TetR><pTet K13
| nM
|
| The optimisation program will give us (γ Ktet / {coeftet} 0) The literature [?] gives Ktet =
|
ntet
| complexation order of TetR><pTet n13
| no dimension
|
| The literature [?] gives ntet =
|
KaTc
| complexation constant aTc><TetR K12
| nM
|
| The literature [?] gives KaTc =
|
naTc
| complexation order aTc><TetR n12
| no dimension
|
| The literature [?] gives naTc =
|
|
↓ Algorithms ↑
find_1
function optimal_parameters = find_f1(X_data, Y_data, initial_parameters)
function output = expr_pTet(parameters, X_data)
for k = 1:length(X_data)
output(k) = parameters(1) * (1 - ...
hill((1 - hill(X_data(k),parameters(4),parameters(5))),parameters(2),parameters(3)));
end
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pTet(parameters, X_data), ...
initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options );
end
Inv_1
function quant_aTc = Inv_f1(inducer_quantity)
global gamma, f0;
function equa = F(x)
equa = f1( (f0/gamma) , x ) - inducer_quantity;
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
quant_aTc = fsolve(F,1,options);
end
|
Also, this experiment will enable us to know the expression of 1 :
<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |
|