Team:Harvard/Project
From 2008.igem.org
(→Future directions) |
(→Project Overview) |
||
Line 56: | Line 56: | ||
| | | | ||
=Project Overview= | =Project Overview= | ||
+ | |||
+ | <h4><b>BACTRICITY: Bacterial Biosensors with Electrical Output</b></h4> | ||
+ | |||
+ | <b>B</b>acteria <b>A</b>s <b>C</b>urrent <b>T</b>ransmitters <b>R</b>eport <b>I</b>nduced <b>C</b>hanges <b>I</b>mportant <b>T</b>o <b>Y</b>ou | ||
The metabolically versatile bacterium Shewanella oneidensis adapts to anaerobic environments by transporting electrons to its exterior, reducing a variety of environmental substrates. When grown anaerobically and provided with lactate as a carbon source, S. oneidensis transfers electrons to an electrode of a microbial fuel cell. We sought to engineer S. oneidensis to report variations in environmental conditions through changes in current production. A previous study has shown that S. oneidensis mutants deficient in the mtrB gene produce less current than the wildtype strain, and that current production in these mutants can be restored by the addition of exogenous mtrB. We attempted to control current production in mtrB knockouts by introducing mtrB on lactose, tetracycline, and heat inducible systems. These novel biosensors integrate directly with electrical circuits, paving the way for the development of automated, biological measurement and reporter systems. | The metabolically versatile bacterium Shewanella oneidensis adapts to anaerobic environments by transporting electrons to its exterior, reducing a variety of environmental substrates. When grown anaerobically and provided with lactate as a carbon source, S. oneidensis transfers electrons to an electrode of a microbial fuel cell. We sought to engineer S. oneidensis to report variations in environmental conditions through changes in current production. A previous study has shown that S. oneidensis mutants deficient in the mtrB gene produce less current than the wildtype strain, and that current production in these mutants can be restored by the addition of exogenous mtrB. We attempted to control current production in mtrB knockouts by introducing mtrB on lactose, tetracycline, and heat inducible systems. These novel biosensors integrate directly with electrical circuits, paving the way for the development of automated, biological measurement and reporter systems. |
Revision as of 01:28, 30 October 2008
|