Method & Algorithm : 2
= act_pBad
Specific Plasmid Characterisation for 2
According to the characterization plasmid (see right) and to our modeling, in the exponential phase of growth, at the steady state, the experiment would give us
and at steady-state and in the exponential phase of growth, we expect :
we use this analytical expression to determine the parameters :
↓ Table of Values ↑
param
| signification
| unit
| value
| comments
|
(fluorescence)
| value of the observed fluorescence
| au
|
| need for 20 measures with well choosen [arab]i
|
conversion
| conversion ratio between fluorescence and concentration ↓ gives ↓
| nM.au-1
| (1/79.429)
|
|
[GFP]
| GFP concentration at steady-state
| nM
|
|
|
γGFP
| dilution-degradation rate of GFP(mut3b) ↓ gives ↓
| min-1
| 0.0198
| Only Dilution Time Cell Disvision : 35 min.
|
2
| activity of pBad with RBS E0032
| nM.min-1
|
|
|
param
| signification corresponding parameters in the equations
| unit
| value
| comments
|
βbad
| total transcription rate of pBad with RBS E0032 not in the Core System
| nM.min-1
|
|
|
(γ Kbad/const.expr(pBad))
| activation constant of pBad not in the Core System
| nM
|
|
|
nbad
| complexation order of pBad not in the Core System
| no dimension
|
| The literature [?] gives nbad =
|
Kara
| complexation constant Arabinose><AraC not in the Core System
| nM
|
| The literature [?] gives Kara =
|
nara
| complexation order Arabinose><AraC not in the Core System
| no dimension
|
| The literature [?] gives nara =
|
|
↓ Algorithms ↑
find_2
function optimal_parameters = find_f2(X_data, Y_data, initial_parameters)
function output = expr_pBad(parameters, X_data)
for k = 1:length(X_data)
output(k) = parameters(1) * ( hill( ...
(hill(X_data(k), parameters(4), parameters(5))), parameters(2), parameters(3)) );
end
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pBad(parameters, X_data), ...
initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options );
end
Inv_2
function quant_ara = Inv_f2(inducer_quantity)
function equa = F(x)
equa = f2( x ) - inducer_quantity;
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
quant_ara = fsolve(F,1,options);
end
|
That will give us directly 2([arab])
<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |
|