Team:Paris/Modeling/
From 2008.igem.org
Line 1: | Line 1: | ||
+ | {{Paris/Menu}} | ||
+ | |||
==Estimation of the parameters== | ==Estimation of the parameters== | ||
Revision as of 14:54, 25 July 2008
Estimation of the parameters
function Popt=findparam clear,
close all %Parameters Tmax=100; %Time
of the simulation Npoints=40; %Number
of points available. We assume for the tests that they are regularly distant. x=1:Tmax/Npoints:Tmax;%Definition of the
inducer vector. %The
following function provides a Hill function, given a X vector and %some
parameter that characterizes it. function y= Hill(x,K,Vmax,n) l=length(x); for i=1:l if K<0
s(i)=K; else s(i)=x(i); end y(i)=(Vmax*(s(i)^n))/((x(i)^n)+(K^n)); end end %Then, we want to introduce some noise in the
data obtained, in order to %simulate biological results. function y = NoisyHill(x,K,Vmax,n) y=Hill(x,K,Vmax,n); for i=1:length(x) y(i)=random('normal',y(i),Vmax/20); end end %Finally, we create a 'noisy Hill' vector that
will be considered as %biological data. function set = genset K=30; Vmax=2; n=3; set=NoisyHill([1:Tmax/Npoints:Tmax],K,Vmax,n); end set=genset(); %The
heart f the problem is to minimize the distance between a %deterministic Hill function
and the noisy one obtained. 'Toopt' is %just the
criteria to minimize. function y = toopt(x,P) y=Hill(x,10*P(1),P(2),P(3))-set; end %These lines use a Matlab function to carry out
the optimization process options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e7,'TolFun',1e-5); Popt=lsqnonlin(@(P)toopt(x,P),[0.1,1,1],[0,0,0],[5,10,10],options); Popt=Popt(:); %In order to see the results, we plot both the noisy curve and the %estimated one. plot(set) hold on plot(Hill(x,10*Popt(1),Popt(2),Popt(3)
),'r'); legend('Experimental
Hill function','Estimation of the experimental hill function'); gtext('NPoints=40, Standard Deviation=1/10'); xlabel('Concentration of X'); ylabel('Rate of Y
production'); end
|