Project
From 2008.igem.org
ZhangHaoran (Talk | contribs) |
ZhangHaoran (Talk | contribs) |
||
Line 59: | Line 59: | ||
.STYLE17 {font-size: 36px} | .STYLE17 {font-size: 36px} | ||
.STYLE18 {font-size: 36px; font-family: "Times New Roman", Times, serif; } | .STYLE18 {font-size: 36px; font-family: "Times New Roman", Times, serif; } | ||
+ | .STYLE19 {color: #FFFFFF; font-family: "Times New Roman", Times, serif; font-size: 20px; } | ||
+ | .STYLE20 { | ||
+ | font-size: 24px; | ||
+ | font-family: "Times New Roman", Times, serif; | ||
+ | font-weight: bold; | ||
+ | color: #FFFFFF; | ||
+ | } | ||
--> | --> | ||
</style> | </style> | ||
</head> | </head> | ||
<body bgcolor="#14285f"> | <body bgcolor="#14285f"> | ||
- | <table width=" | + | <table width="981" height="4875" border="0" align="center" cellpadding="0" cellspacing="0" bordercolor="#03438A"> |
<tr bgcolor="02021e"> | <tr bgcolor="02021e"> | ||
- | <td width=" | + | <td width="526" nowrap="nowrap" bgcolor="#03438A"><img src="https://static.igem.org/mediawiki/igem.org/2/28/Logonew2.jpg" width="473" height="120" /></td> |
- | <td width=" | + | <td width="455" height="54" valign="bottom" nowrap="nowrap" bgcolor="#03438A" id="logo"><img src="https://static.igem.org/mediawiki/2008/f/fc/Logonew1.jpg" width="340" height="120" /><a href="https://2008.igem.org/Team:Tianjin" class="STYLE1"><span class="STYLE3">Home</span></a></td> |
</tr> | </tr> | ||
Line 81: | Line 88: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="4701" colspan="2" valign="top" bgcolor="#03438A"><table width=" | + | <td height="4701" colspan="2" valign="top" bgcolor="#03438A"><table width="968" height="1490" border="0" align="center" cellpadding="2" cellspacing="0"> |
<tr> | <tr> | ||
- | <td colspan=" | + | <td colspan="2" bgcolor="#03438A" class="subHeader"><div align="center" class="STYLE16" style="margin-bottom: 0"> |
<p> </p> | <p> </p> | ||
<p>A Synthetic Plasmid Self-Assembly system</p> | <p>A Synthetic Plasmid Self-Assembly system</p> | ||
Line 89: | Line 96: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="1040" colspan=" | + | <td height="1040" colspan="2" class="subHeader STYLE4"><table width="957" height="1065" border="0"> |
<tr> | <tr> | ||
<td height="39" colspan="2" bgcolor="#03438A"><span class="STYLE1" style="margin-bottom: 0"><strong>Background</strong></span></td> | <td height="39" colspan="2" bgcolor="#03438A"><span class="STYLE1" style="margin-bottom: 0"><strong>Background</strong></span></td> | ||
Line 104: | Line 111: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td bgcolor="#03438A"><a href="http://www.mun.ca/biochem/courses/3107/images/rec_invert.GIF" target="_blank"><img src="https://static.igem.org/mediawiki/2008/1/1c/机理1.gif" width=" | + | <td bgcolor="#03438A"><a href="http://www.mun.ca/biochem/courses/3107/images/rec_invert.GIF" target="_blank"><img src="https://static.igem.org/mediawiki/2008/1/1c/机理1.gif" width="364" height="350" border="0" align="left" /></a></td> |
<td bgcolor="#03438A"><a href="http://www.mun.ca/biochem/courses/3107/images/rec_direct.GIF" target="_blank"><img src="https://static.igem.org/mediawiki/2008/3/32/%E6%9C%BA%E7%90%862.gif" width="350" height="350" /></a></td> | <td bgcolor="#03438A"><a href="http://www.mun.ca/biochem/courses/3107/images/rec_direct.GIF" target="_blank"><img src="https://static.igem.org/mediawiki/2008/3/32/%E6%9C%BA%E7%90%862.gif" width="350" height="350" /></a></td> | ||
</tr> | </tr> | ||
Line 141: | Line 148: | ||
<tr> | <tr> | ||
- | <td height="23" colspan=" | + | <td height="23" colspan="2" bgcolor="#03438A" class="STYLE11"><p class="STYLE11 STYLE4">The result of recombination is that the integrated prophage is flanked by two attachment sites but now they are slightly different: <em>attL</em> has the structure BOP' and <em>attR</em> has the structure POB'. </p></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="23" colspan=" | + | <td height="23" colspan="2" bgcolor="#03438A" class=" STYLE10"><p class="STYLE10 STYLE4">Cre-Lox recombination is a special type of site-specific recombination, which is often applied as a gene knockout tool. <br /> |
Cre is a site-specific DNA recombinase, which can catalyse the recombination of DNA between specific sites, e.g. loxP in a DNA molecule. When cells that have loxP sites in their genome express Cre, a reciprocal recombination event will occur between the loxP sites. The double stranded DNA is cut at both loxP sites by the Cre protein. The strands are then rejoined with <a href="http://en.wikipedia.org/wiki/DNA_ligase" title="DNA ligase">DNA ligase</a>. The efficiency of recombination depends on the orientation of the loxP sites. For two lox sites on the same chromosome arm, inverted loxP sites will cause an inversion, while a direct repeat of loxP sites will cause a deletion event.</p> | Cre is a site-specific DNA recombinase, which can catalyse the recombination of DNA between specific sites, e.g. loxP in a DNA molecule. When cells that have loxP sites in their genome express Cre, a reciprocal recombination event will occur between the loxP sites. The double stranded DNA is cut at both loxP sites by the Cre protein. The strands are then rejoined with <a href="http://en.wikipedia.org/wiki/DNA_ligase" title="DNA ligase">DNA ligase</a>. The efficiency of recombination depends on the orientation of the loxP sites. For two lox sites on the same chromosome arm, inverted loxP sites will cause an inversion, while a direct repeat of loxP sites will cause a deletion event.</p> | ||
<p class="STYLE10 STYLE4"> <span class="STYLE11">Lox P site</span><br /> | <p class="STYLE10 STYLE4"> <span class="STYLE11">Lox P site</span><br /> | ||
Line 150: | Line 157: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="23" colspan=" | + | <td height="23" colspan="2" bgcolor="#03438A" class=" STYLE13"><span class="STYLE2">aaaaaa</span><img src="https://static.igem.org/mediawiki/2008/6/6e/09875.jpg" width="803" height="104" align="middle" /></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="23" colspan=" | + | <td height="23" colspan="2" bgcolor="#03438A" class="STYLE1"><strong>Objectives</strong>: Bacterial assembly is aimed to be achieved based on the mechanism of site-specific recombination systems, So that the expensive reagent as well as the laboring tasks could be saved in gene cloning experiments.</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td | + | <td width="533" height="46" bgcolor="#03438A" class=" STYLE13"><p class="STYLE7">Our design</p> |
<p class="STYLE7">We have innovatively utilized the site-specific systems mentioned above to build a foolproof bacterial assembly system to future reduce the labor and cost involved in gene cloning experiments. We have designed three standardized vectors which perform as the donors, receptor vector respectively.</p></td> | <p class="STYLE7">We have innovatively utilized the site-specific systems mentioned above to build a foolproof bacterial assembly system to future reduce the labor and cost involved in gene cloning experiments. We have designed three standardized vectors which perform as the donors, receptor vector respectively.</p></td> | ||
<td height="46" bgcolor="#03438A" class=" STYLE13"><img name="" src="https://static.igem.org/mediawiki/2008/4/45/Zong.gif" width="350" height="350" alt=""></td> | <td height="46" bgcolor="#03438A" class=" STYLE13"><img name="" src="https://static.igem.org/mediawiki/2008/4/45/Zong.gif" width="350" height="350" alt=""></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td | + | <td height="250" align="center" bgcolor="#03438A" class="subHeader"><span class="STYLE4"><span class="STYLE11"> |
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="531" height="533"> | <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="531" height="533"> | ||
<param name="movie" value="https://static.igem.org/mediawiki/2008/d/d6/1111.swf" /> | <param name="movie" value="https://static.igem.org/mediawiki/2008/d/d6/1111.swf" /> | ||
- | <param name="quality" value="high" /><param name="BGCOLOR" value="#03438A"> | + | <param name="quality" value="high" /> |
+ | <param name="BGCOLOR" value="#03438A"> | ||
<embed src="https://static.igem.org/mediawiki/2008/d/d6/1111.swf" width="531" height="533" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" bgcolor="#03438A"></embed> | <embed src="https://static.igem.org/mediawiki/2008/d/d6/1111.swf" width="531" height="533" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" bgcolor="#03438A"></embed> | ||
- | + | </object> | |
- | + | </span></span></td> | |
- | <td width=" | + | <td width="427" bgcolor="#03438A" class="STYLE9"><p class="STYLE15">How do they work? <br /> |
- | + | <span class="STYLE4">First, we define the Receptor as the vector that has already existed in the cell (E.coli.), and the Donor as the vector containing the desired gene that we intend to integrate into the Receptor. The gene circuits for these plasmids are illustrated below.</span></p> | |
- | + | <p class="STYLE15">When the Donor vector carrying the gene of interest GENE1 was introduced to the E Coli which contains the Receptor vector, the site-specific recombination will occur between the <em>attB1</em> site and the <em>attP1</em> site, so that the two sequences will be integrated into one circular DNA.</p> | |
+ | <p class="STYLE8">The recombinant DNA then could be selected in the liquid culture containing both ampicillin and kanamycin. Then, under inducible conditions, Cre will be expressed and the recombined sequence will be divided into two separate plasmids; one will retain the desired gene 1, while the other will preserve the killer gene ccdB, which is under the control of another inducible promoter. Because the two plasmids have shared origin site, plasmid incompatibility will occur thus the two kinds of plasmids will be separated into different cells. </p> | ||
+ | <p class="STYLE8">When induced, CcdB could be expressed so that cells containing CcdB will be killed. </p> | ||
+ | <p class="STYLE8">In order to realize the linkage of GENE 1 with GENE 2, we will introduce the new plasmid containing the desired GENE2 to the survival cells, in which the plasmids containing GENE 1 will behave as the new Receptor plasmid. Very similarly recombination between the <em>attB2 </em>and<em> attP2 </em>and the cleavage between the two <em>loxp </em> sites will be performed, and plasmids containing the linked GENE1 and GENE2 will be selected when the promoter expresses CcdB is induced. </p> | ||
+ | <p class="STYLE8">The reason for us to use two sets of<em> attB/attP</em> specific sites is to avoid the combination within one molecule. </p> | ||
+ | <p class="STYLE15"> </p></td> | ||
</tr> | </tr> | ||
Line 176: | Line 189: | ||
<table width="971" height="158" border="0" align="center"> | <table width="971" height="158" border="0" align="center"> | ||
<tr> | <tr> | ||
- | <td width="965" bgcolor="#03438A"><p class=" | + | <td width="965" bgcolor="#03438A"><p class="STYLE20">The whole process</p> |
+ | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 195: | Line 209: | ||
</tr> | </tr> | ||
</table> | </table> | ||
- | <table width="969" height=" | + | <table width="969" height="1599" border="0" align="center" cellpadding="2" cellspacing="0"> |
<tr> | <tr> | ||
- | <td height="59" colspan=" | + | <td height="59" colspan="2" bgcolor="#03438A" class="subHeader"><p align="center" class="STYLE3" style="margin-bottom: 0">The synthetic convertible ecosystem</p> </td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="23" colspan=" | + | <td height="23" colspan="2" bgcolor="#03438A" class="subHeader STYLE5"><p class="STYLE4"><span class="STYLE12">Background</span><br />There is no mono-culture in nature! And in industry, coculture of species/strains are widely used to either improve productivity or lower the cost. The manufacturing of Vitamin C in China, which has contributed to 60 percent of its world production, could serve as an excellent example to validate the significance of coculture in industry. Thus to understand the interactions between coexistent ecosystems will not only contribute to human’s perception of nature but also to human practices in engineering.</p> |
- | + | <p class="STYLE9">The attempts to uncover the mechanics and complex interrelations within natural microbial systems and quantitatively measurement of environmental factors on system behavior often failed because of the entangled intrinsic parameters and un-measurable population dynamics.</p> | |
- | <p class=" | + | <p class="STYLE9">We designed and constructed an ecosystem constituted of two strains of E.coli, which could represent various biological relationships along with the fluctuation of antibiotics concentration as the environmental pressure and the inducing molecular such as IPTG and arobinose as the regulating factors. </p></td> |
- | + | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="30" colspan=" | + | <td height="30" colspan="2" bgcolor="#03438A" class="subHeader"><span class="STYLE7">The Tools</span></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height="30" colspan=" | + | <td height="30" colspan="2" bgcolor="#03438A" class="subHeader"><table width="968" height="384" border="0" align="center"> |
<tr> | <tr> | ||
<td width="318" bordercolor="#03438A" bgcolor="#03438A"><p class="STYLE8"><span class="STYLE10"><strong>Toggle switch</strong>-----toggle switch is a switch on the basis of two mutually-repressive promoters, the product of each represses the express of that of the other, and both the repressors could be deactivated in certain conditions. And the state of the cell could be regulated by the change of the culture variations.</span></p></td> | <td width="318" bordercolor="#03438A" bgcolor="#03438A"><p class="STYLE8"><span class="STYLE10"><strong>Toggle switch</strong>-----toggle switch is a switch on the basis of two mutually-repressive promoters, the product of each represses the express of that of the other, and both the repressors could be deactivated in certain conditions. And the state of the cell could be regulated by the change of the culture variations.</span></p></td> | ||
Line 227: | Line 240: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td width=" | + | <td width="477" height="250" rowspan="2" align="center" bgcolor="#03438A" class="subHeader"><table width="470" height="758" border="0"> |
- | + | <tr> | |
- | + | <td width="464" height="20"><img src="https://static.igem.org/mediawiki/2008/b/b9/Hounan.jpg" width="469" height="381"></td> | |
- | + | </tr> | |
- | < | + | <tr> |
- | </ | + | <td><img src="https://static.igem.org/mediawiki/2008/9/9e/Hounasna.jpg" width="472" height="361"></td> |
- | </strong></ | + | </tr> |
- | + | ||
- | <td width=" | + | </table> |
+ | <span class="STYLE11"><span class="STYLE4"><strong> </strong></span></span></td> | ||
+ | <td width="487" height="41" bgcolor="#03438A" class="sidebarHeader STYLE5 STYLE4 STYLE12">Our Design </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td height=" | + | <td height="821" valign="top" bgcolor="#03438A" class="bodyText STYLE5 STYLE4 STYLE10"><p>The design for the cell I: The genetic circuit can be divided into three different functional sections. <br> |
- | <p>When | + | The first one in the graph is the detecting Section. By using this section you can detect the cell density according to the intensity of the red fluorescence. The detecting section is especially useful when you incubate two different kinds of E.coli in a coculture.</p> |
- | + | <p>The second section is the Helper section. We call it helper section because the LuxR protein is the prerequisite for the activation of PLux. Here we used a constitutive promoter to express the LuxR protein. </p> | |
+ | <p>The core section is the toggle switch. Toggle switch is a genetic device that can switch between two convertible states, which, here, represents a different survival strategy for the cells each. </p> | ||
+ | <p>When adding Arobinose/AHL different genes will get expressed behind the two mutually-repressive promoters. That means when added into the culture AHL will diffuse into the cell bind the LuxR protein and form a complex which can activate the LuxPr promoter and then the genes of rhII capR and araC will get expressed. Then the araC protein will bind to the PBad/araC promoter and repress the expression of the aiiA and another capR gene. However, you can turn the switch to the other side by adding Arobinose. When adding arobinose into the culture, the repression functional molecular AraC protein will get released from the PBad/AraC promoter. With the expression of the aiiA gene the signal molecular will get digested and therefore decrease to a proper level which is not high enough to activate the LuxPr promoter.<br> | ||
+ | The most important thing in this section is the capacity of the two different promoters LuxPr and PBad/araC are quite different. When the LuxRr promoter is activated, its higher capacity will express more chloromycetin resistant protein and another important thing is by sensing the AHL which is sent out by cell-two it can produce another kind of signal molecular BHL.<br> | ||
+ | Cell 2 is similarly designed as Cell 1. </p></td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
- | <table width=" | + | <table width="975" height="84" border="0"> |
<tr> | <tr> | ||
- | <td><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width=" | + | <td><p class="STYLE19">The design for the cell I: The genetic circuit can be divided into three different functional sections. <br> |
+ | Cell 2 is similarly designed as Cell 1.</p> </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><p class="STYLE19">The first one in the graph is the detecting Section. By using this section you can detect the cell density according to the intensity of the red fluorescence. The detecting section is especially useful when you incubate two different kinds of E.coli in a coculture.</p> | ||
+ | <p class="STYLE19">The second section is the Helper section. We call it helper section because the LuxR protein is the prerequisite for the activation of PLux. Here we used a constitutive promoter to express the LuxR protein. The core section is the toggle switch. Toggle switch is a genetic device that can switch between two convertible states, which, here, represents a different survival strategy for the cells each. </p> | ||
+ | <p class="STYLE19"></p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span class="STYLE19">When adding Arobinose/AHL different genes will get expressed behind the two mutually-repressive promoters. That means when added into the culture AHL will diffuse into the cell bind the LuxR protein and form a complex which can activate the LuxPr promoter and then the genes of rhII capR and araC will get expressed. Then the araC protein will bind to the PBad/araC promoter and repress the expression of the aiiA and another capR gene. However, you can turn the switch to the other side by adding Arobinose. When adding arobinose into the culture, the repression functional molecular AraC protein will get released from the PBad/AraC promoter. With the expression of the aiiA gene the signal molecular will get digested and therefore decrease to a proper level which is not high enough to activate the LuxPr promoter.<br> | ||
+ | The most important thing in this section is the capacity of the two different promoters LuxPr and PBad/araC are quite different. When the LuxRr promoter is activated, its higher capacity will express more chloromycetin resistant protein and another important thing is by sensing the AHL which is sent out by cell-two it can produce another kind of signal molecular BHL. | ||
+ | </span></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <table width="974" height="168" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><p><strong><span class="STYLE7">Mutualism and <a name="OLE_LINK1">Competition</a></span></strong></p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="556"><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="609" height="507"> | ||
+ | <param name="movie" value="https://static.igem.org/mediawiki/2008/8/8a/Arobinosq3e2e.swf"> | ||
+ | <param name="quality" value="high"> | ||
+ | <embed src="https://static.igem.org/mediawiki/2008/8/8a/Arobinosq3e2e.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="609" height="507"></embed> | ||
+ | </object></td> | ||
+ | <td width="408"><p class="STYLE19"><strong>Competition</strong></p> | ||
+ | <p class="STYLE15"> In the culture that both ampicillin and chloromycetin are available, it requires the expression of the both the resistant genes for both antibiotics for a strain’s survival. Without adding any signal molecular as the initially inducing factor into the culture the two kinds of E.coli can not communicate with each other so they will keep on the competent stage. In this stage each kind of cell must survive all by it self in some method as assimilating the nutrition in the culture. As a result the two different kinds of E.coli fight with each other for the space and nutrient ingredient. </p> | ||
+ | <p class="STYLE15">By adding some AHL into the culture, the LuxPr promoter will get activated by the AHL and LuxR complex. And then the expression product of the rhlI gene BHL will diffuse into the cell-two which can sense BHL-RhIR complex by binding to the PrhI promoter and turning on the expression of luxI kanR and lacI genes. The LacI protein will bind to the PBad/araC promoter and therefore stop the digestion of the signal molecular by the expression of the aiiA gene. At the same time the expression of the luxI gene will send out AHL .By using a very similar mechanism the cell-one can sense the AHL molecular.</p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="610" height="515"> | ||
<param name="movie" value="https://static.igem.org/mediawiki/2008/3/32/Ah11l.swf"> | <param name="movie" value="https://static.igem.org/mediawiki/2008/3/32/Ah11l.swf"> | ||
<param name="quality" value="high"> | <param name="quality" value="high"> | ||
- | <embed src="https://static.igem.org/mediawiki/2008/3/32/Ah11l.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width=" | + | <embed src="https://static.igem.org/mediawiki/2008/3/32/Ah11l.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="610" height="515"></embed> |
- | </object> | + | </object></td> |
- | + | <td><p class="STYLE19"><strong>Mutualism</strong> <br> | |
- | + | In this state the two kinds of cells communicate with each other by sensing the signal molecular sent by the counterpart.<br> | |
- | + | It seems that with the help of each other both of them can live better in the harsh environment and the fact is the capacity of the LuxPr and PrhI are higher the than the Plac and Pbad/araC promoters. With higher expression of the ampicillin and chloromycetin resistant protein both of them can survive in the ultra-high antibiotic concentration. </p></td> | |
- | + | ||
- | + | ||
</tr> | </tr> | ||
- | </table> <p><span class="STYLE9" style="margin-bottom: 0">This idea was inspired by the theory of Prisoner’s Dilemma. | + | </table> |
+ | <table width="556" height="433" border="0" align="center"> | ||
+ | <tr> | ||
+ | <td><span class="STYLE11"><span class="STYLE4"><strong> | ||
+ | <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="577" height="523"> | ||
+ | <param name="movie" value="https://static.igem.org/mediawiki/2008/e/eb/222.swf" /> | ||
+ | <param name="quality" value="high" /> | ||
+ | <embed src="https://static.igem.org/mediawiki/2008/e/eb/222.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="577" height="523"></embed> | ||
+ | </object> | ||
+ | </strong></span></span></td></tr> | ||
+ | </table> | ||
+ | <p><span class="STYLE9" style="margin-bottom: 0">This idea was inspired by the theory of Prisoner’s Dilemma. | ||
As in prisoners’ dilemma, the bacteria in our design are faced with two solutions for coexistence, they could either choose to cooperate with one another by providing inducers to express their partners’ antibiotics-resistance genes or they could take a foe strategy in which no cooperation is needed for both strains’ survival.</span></p> | As in prisoners’ dilemma, the bacteria in our design are faced with two solutions for coexistence, they could either choose to cooperate with one another by providing inducers to express their partners’ antibiotics-resistance genes or they could take a foe strategy in which no cooperation is needed for both strains’ survival.</span></p> | ||
</td> | </td> |
Revision as of 11:35, 28 October 2008
Home | ||||||||||||||||||||||||||||||||||||||||||||||||||||
This idea was inspired by the theory of Prisoner’s Dilemma. As in prisoners’ dilemma, the bacteria in our design are faced with two solutions for coexistence, they could either choose to cooperate with one another by providing inducers to express their partners’ antibiotics-resistance genes or they could take a foe strategy in which no cooperation is needed for both strains’ survival. |
||||||||||||||||||||||||||||||||||||||||||||||||||||