Team:LCG-UNAM-Mexico/Experiments/Design
From 2008.igem.org
Line 17: | Line 17: | ||
.style3 {color: #5C743D; font-size: 14px; } | .style3 {color: #5C743D; font-size: 14px; } | ||
.style4 {font-size: 9px} | .style4 {font-size: 9px} | ||
+ | .style9 { | ||
+ | font-size: 10; | ||
+ | font-weight: bold; | ||
+ | } | ||
--> | --> | ||
</style> | </style> | ||
Line 126: | Line 130: | ||
<p align="center"><a href="https://static.igem.org/mediawiki/2008/5/57/Tabla_componentes.pdf"><img src="https://static.igem.org/mediawiki/2008/e/e0/Tabla_componentes_2.png" width="500" border="0" /></a></p> | <p align="center"><a href="https://static.igem.org/mediawiki/2008/5/57/Tabla_componentes.pdf"><img src="https://static.igem.org/mediawiki/2008/e/e0/Tabla_componentes_2.png" width="500" border="0" /></a></p> | ||
<span class="style4"><strong>*</strong> All the references for this table are included at the end of the design section. </span> | <span class="style4"><strong>*</strong> All the references for this table are included at the end of the design section. </span> | ||
- | <p align="left" | + | <p align="left" class="calHeader style1">Primer design</p> |
- | <p align="center"><img src="https://static.igem.org/mediawiki/2008/a/a0/Oligo_design_LCG_UNAM.png" width="500" border="0" /></p> | + | <p align="center" ><span class="bodyText"><img src="https://static.igem.org/mediawiki/2008/a/a0/Oligo_design_LCG_UNAM.png" width="500" border="0" /></span></p> |
- | <p align=" | + | <p align="center" ><span class="bodyText"><br> |
- | < | + | For the assembly of the devices, the oligos contain restriction sites that are compatible to each vector or subsequent part. The synthesized primers were designed to carry the following operators and promoters in order to introduce them in the devices.</span></p> |
+ | <ul> | ||
+ | <li> | ||
+ | <div align="left"><span class="bodyText" align="left">The upper primer of the RcnA contain the cI and RcnR promoters in the BBa_K119009 part.</span></div> | ||
+ | </li> | ||
+ | <li> | ||
+ | <div align="left"><span class="bodyText" align="left"> For the BBa_K119010/BBa_119011 the upper primer of AiiA contain the LacZ promoter</span> and the modified LacZ promoter.<br> | ||
+ | <br> | ||
+ | </div> | ||
+ | </li> | ||
+ | </ul> | ||
+ | <p align="center"> </p> | ||
<p align="left" class="calHeader">Devices</p> | <p align="left" class="calHeader">Devices</p> | ||
<p align="left"><img src="https://static.igem.org/mediawiki/2008/2/28/Device3_2.png" width="150" border="0" /></p> | <p align="left"><img src="https://static.igem.org/mediawiki/2008/2/28/Device3_2.png" width="150" border="0" /></p> | ||
Line 151: | Line 166: | ||
<p align="justify">First of all we need a dispositive capable of detecting small resistivity variations. To achieve this, a resistive array in a Wheatstone bridge configuration is implemented. </p> | <p align="justify">First of all we need a dispositive capable of detecting small resistivity variations. To achieve this, a resistive array in a Wheatstone bridge configuration is implemented. </p> | ||
<p align="justify">To process the signal a Digital-Analogical capture card with an USB communication interface will be used. This will allow analogical data acquisition and its transfer to a computer on a binary format.</p> | <p align="justify">To process the signal a Digital-Analogical capture card with an USB communication interface will be used. This will allow analogical data acquisition and its transfer to a computer on a binary format.</p> | ||
+ | <p align="justify"> </p> | ||
+ | <p align="justify"> </p> | ||
<p align="left"><span class="style3">References</span></p> | <p align="left"><span class="style3">References</span></p> | ||
<p align="left"><br> | <p align="left"><br> | ||
Line 157: | Line 174: | ||
<p align="left"><strong>3.-</strong>Kovach et al.(1994)<strong>, "pBBR1MCS: a broad-host-range cloning vector".</strong> | <p align="left"><strong>3.-</strong>Kovach et al.(1994)<strong>, "pBBR1MCS: a broad-host-range cloning vector".</strong> | ||
<p align="left"><strong>4.-</strong><span class="bodyText">Parsek MR,</span>(1999) <span class="bodyText"><strong>Acyl homoserine-lactone quorum-sensing signal generation.</strong></span>Apr 13;96(8):4360-5. | <p align="left"><strong>4.-</strong><span class="bodyText">Parsek MR,</span>(1999) <span class="bodyText"><strong>Acyl homoserine-lactone quorum-sensing signal generation.</strong></span>Apr 13;96(8):4360-5. | ||
- | |||
<p align="left"><strong>5.-http://partsregistry.org/Part:BBa_I729006</strong> | <p align="left"><strong>5.-http://partsregistry.org/Part:BBa_I729006</strong> | ||
<p align="left"><strong>6.-</strong>Whiteheada N.A., Barnada A.M.L., Slaterra H.(2001)<strong> "Quorum-sensing in Gram-negative bacteria" .</strong><br> | <p align="left"><strong>6.-</strong>Whiteheada N.A., Barnada A.M.L., Slaterra H.(2001)<strong> "Quorum-sensing in Gram-negative bacteria" .</strong><br> |
Revision as of 19:05, 29 October 2008
LCG-UNAM-Mexico | ||||||||||||||||
iGEM 2008 TEAM | ||||||||||||||||
|
System First of all, we needed a system that could cause a change in its medium conductivity. An extrusion pump seemed to be the best scheme to achieve this. Once this was devised, we needed a mechanism to regulate the system. We decided to use a negative regulator because it's the only way to transcriptionally regulate the expression of a gene in a definitive way.
The components selected to fulfill the system requirements are enlisted in the next table: * All the references for this table are included at the end of the design section.Primer design
Devices
Device BBa_K119009: The extrusion pump.
Devices BBa_K119010/BBa_K119011: The regulatory device In order to control the RcnA activity this device includes the gene encoding LuxR under the regulation TetR constitutive promoter followed by cI, which will repress RcnA in the prescence of AHL:LuxR. The last component of the device is the gene encoding AiiA. In BBa_K119010 lacZ promoter is upstream of AiiA, while BBa_K119011 carries a mutated version of it. The plasmid carrying this device will be PRK415.
We intend to measure variations in resistivity in a medium with a bacteria culture. This is achieved using an electronic system. First of all we need a dispositive capable of detecting small resistivity variations. To achieve this, a resistive array in a Wheatstone bridge configuration is implemented. To process the signal a Digital-Analogical capture card with an USB communication interface will be used. This will allow analogical data acquisition and its transfer to a computer on a binary format.
References
2.-Rodrigue A. Et al. (2005) "Identification of rcnA (yohM), a Nickel and Cobalt Resistance Gene in Esherichia coli" 3.-Kovach et al.(1994), "pBBR1MCS: a broad-host-range cloning vector". 4.-Parsek MR,(1999) Acyl homoserine-lactone quorum-sensing signal generation.Apr 13;96(8):4360-5. 5.-http://partsregistry.org/Part:BBa_I729006 6.-Whiteheada N.A., Barnada A.M.L., Slaterra H.(2001) "Quorum-sensing in Gram-negative bacteria" . 16.- (1998). N.T. Keen, S. Tamaki, D. Kobayashi, and D. Trollinger.
| |||||||||||||||