Team:Harvard/Parts/Tempsenseci

From 2008.igem.org

(Difference between revisions)
(Results)
(Results)
Line 82: Line 82:
===Results===
===Results===
Induction of GFP expression was observed at both 2 and 4 hours after moving samples to 40 ºC.  While levels of GFP expression in the GFP+ control ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K098991| BBa_K098991]) went down in the samples at 40 ºC, levels in the inducible systems increased slightly. Note that the ''absolute levels'' of GFP expression do not increase much relative to 30 ºC (see our raw data at at the bottom of the page), but the increase in GFP expression is significantly different behavior from the decrease observed in the GFP+ control. We hypothesize that elevated temperature affects the GFP expression (e.g. by disrupting protein folding), and that even the small increase in GFP expression with our systems indicates effective induction. However, this does suggest that such a system is not optimal for inducing the expressing of heat-sensitive proteins.
Induction of GFP expression was observed at both 2 and 4 hours after moving samples to 40 ºC.  While levels of GFP expression in the GFP+ control ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K098991| BBa_K098991]) went down in the samples at 40 ºC, levels in the inducible systems increased slightly. Note that the ''absolute levels'' of GFP expression do not increase much relative to 30 ºC (see our raw data at at the bottom of the page), but the increase in GFP expression is significantly different behavior from the decrease observed in the GFP+ control. We hypothesize that elevated temperature affects the GFP expression (e.g. by disrupting protein folding), and that even the small increase in GFP expression with our systems indicates effective induction. However, this does suggest that such a system is not optimal for inducing the expressing of heat-sensitive proteins.
-
 
-
///mak into coherent link ////  PDF version: [https://static.igem.org/mediawiki/2008/c/ce/CIts_system.pdf]
 
<div style="text-indent:0pt;color:black">[[Image:CIts.png|780px|thumb|center|A comparison of GFP expression following thermoinduction of cells harboring BBa_K098987, BBa_K098988, a constitutive GFP generator (GFP+ control), and a plasmid not encoding GFP (GFP- control).]]</div>
<div style="text-indent:0pt;color:black">[[Image:CIts.png|780px|thumb|center|A comparison of GFP expression following thermoinduction of cells harboring BBa_K098987, BBa_K098988, a constitutive GFP generator (GFP+ control), and a plasmid not encoding GFP (GFP- control).]]</div>

Revision as of 01:49, 30 October 2008



Thermoinducible cI System

This system uses a a temperature sensitive variant of cI lambda to regulate the lambda promoter. The thermoinducible cI lambda system uses cI857 (a mutant form of cI from [http://www.addgene.org/pgvec1?f=c&vectorid=5079&cmd=genvecmap&dim=800&format=html&mtime=1188314819| pGW7] purchased from [http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx#40554| ATCC]) to regulate expression of genes under the control of the lambda promoter. The cI857 repressor is repressed by thermal denaturation. Activity of cI857 begins to decrease around 30 ºC and is fully denatured by around 42 ºC (Leipold et al., 1994). Thus transcription of the gene under the control of the lambda promoter can be induced by increasing the temperature from 30 ºC to 37 ºC-40 ºC.

BBa_K098995

This is a thermosensitive cI inducible system driven by a strong promoter.

BBa_K098995

BBa_K098993

This is a thermosensitive cI inducible system driven by a weak promoter.

BBa_K098993

Induction Test for Thermosensitive cI Systems with GFP Reporters

An induction test was designed to test the inducibility of the heat sensitive cI systems. Two constructs were made:

BBa_K098988

This is a thermosensitive cI inducible system driven by a strong promoter and with a GFP indicator.

BBa_K098988

BBa_K098988

This is a thermosensitive cI inducible system driven by a weak promoter and with a GFP indicator.

BBa_K098987

Experimental Design

Thermo Induction Experimental Design

Starter cultures of E. coli with [http://partsregistry.org/wiki/index.php?title=Part:BBa_K098988| BBa_K098988] and [http://partsregistry.org/wiki/index.php?title=Part:BBa_K098987| BBa_K098987] were grown overnight. They were then diluted and grown to OD 0.2 before separation into induced (40 ºC) and uninduced cultures (30 ºC). OD and GFP readings were taken at time 0, 2, and 4 hours. Additionally, after diluting T=2hrs samples to OD 0.2 for accurate GFP measurements, samples were further diluted 1000x, induced (or not induced) again, and placed back in their respective incubators until the end of the experiment, when OD and GFP readings were taken.

Results

Induction of GFP expression was observed at both 2 and 4 hours after moving samples to 40 ºC. While levels of GFP expression in the GFP+ control ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K098991| BBa_K098991]) went down in the samples at 40 ºC, levels in the inducible systems increased slightly. Note that the absolute levels of GFP expression do not increase much relative to 30 ºC (see our raw data at at the bottom of the page), but the increase in GFP expression is significantly different behavior from the decrease observed in the GFP+ control. We hypothesize that elevated temperature affects the GFP expression (e.g. by disrupting protein folding), and that even the small increase in GFP expression with our systems indicates effective induction. However, this does suggest that such a system is not optimal for inducing the expressing of heat-sensitive proteins.

A comparison of GFP expression following thermoinduction of cells harboring BBa_K098987, BBa_K098988, a constitutive GFP generator (GFP+ control), and a plasmid not encoding GFP (GFP- control).


Should it help you, we also have the raw values graphed below. Note that a slight decrease in baseline fluorescence was also observed in negative control GFP- cells ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K098981| BBa_K098981]).

Thermoinduction, raw data

Results from the 1000x dilutions were inconclusive because the E. coli grows much slower at 30 ºC than at 40 ºC, so by the end of the experiment, there was a vast difference in cell concentration between the two sets of samples.