Team:Harvard

From 2008.igem.org

(Difference between revisions)
Line 47: Line 47:
<img src="https://static.igem.org/mediawiki/2008/0/06/Thanks_border.jpg">
<img src="https://static.igem.org/mediawiki/2008/0/06/Thanks_border.jpg">
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
<div style="position: absolute; left: 100px; top: 880px; height: 400px; width: 100px; padding: 1em;">
 +
<center>
 +
Alain Viel,
 +
Orianna Bretschger,
 +
Daad Saffarini,
 +
Helen White,
 +
Remy Chait,
 +
Natalie Farny,
 +
Christina Agapakis,
 +
Jason Lohmueller,
 +
Kim de Mora,
 +
Colleen Hansel,
 +
Peter Girguis,
 +
Christopher Marx,
 +
George Church,
 +
Jagesh V. Shah,
 +
Pam Silver,
 +
Tamara Brenner,
 +
Harvard BioLabs
 +
</center>
 +
</div>
 +
 +
 +

Revision as of 03:34, 30 October 2008

Alain Viel, Orianna Bretschger, Daad Saffarini, Helen White, Remy Chait, Natalie Farny, Christina Agapakis, Jason Lohmueller, Kim de Mora, Colleen Hansel, Peter Girguis, Christopher Marx, George Church, Jagesh V. Shah, Pam Silver, Tamara Brenner, Harvard BioLabs
Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.
Shewanella oneidensis MR-1
(fondly referred to as Shewie)
is a metabolically versatile,
and genetically tractable, gram-
negative facultative anaerobe which under
anaerobic conditions reduces a number of electron
acceptors. This ability can be harnessed by
microbial fuel cells to produce an electric current.
The broad goal of our project was to engineer S. Oneidensis to produce a detectable change in electric current in response to some environmental stimulus. In order to observe such a reaction, our first task was to design an environment capable of housing bacteria and measuring current production. The answer? Microbial fuel cells.



ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss