Team:LCG-UNAM-Mexico/Modeling
From 2008.igem.org
Line 24: | Line 24: | ||
color: #5C743D; | color: #5C743D; | ||
} | } | ||
+ | .style4 { | ||
+ | font-size: 12px; | ||
+ | font-weight: bold; | ||
+ | } | ||
+ | .style5 {font-size: 13px} | ||
--> | --> | ||
</style> | </style> | ||
Line 127: | Line 132: | ||
<li> ρ </li> | <li> ρ </li> | ||
<li> RcnA </li> | <li> RcnA </li> | ||
- | <li> Ni | + | <li> Ni<sub>int</sub></li> |
- | <li> Ni | + | <li> Ni<sub>ext</sub> </li> |
<li> Unk</li> | <li> Unk</li> | ||
</ol> </td> | </ol> </td> | ||
Line 167: | Line 172: | ||
<ol> | <ol> | ||
<li> | <li> | ||
- | <div align="justify"> <strong>Once there is nickel in the medium, RcnR no longer participates in the pump’s regulation.</strong> If there’s nickel in the medium, we can assume that RcnR is always coupled with a Ni molecule, so it will not be capable of repressing RcnA (The few RcnR molecules in the cell will cause noise, but this will be indistinguishable from the pump’s normal behavior). | + | <div align="justify"> <strong>Once there is nickel in the medium, RcnR no longer participates in the pump’s regulation.</strong> If there’s nickel in the medium, we can assume that RcnR is always coupled with a Ni molecule, so it will not be capable of repressing RcnA (The few RcnR molecules in the cell will cause noise, but this will be indistinguishable from the pump’s normal behavior).<sup>1</sup><strong></strong> </div> |
</li> | </li> | ||
- | <li> <strong>Cell membrane permeability to AHL is not considered inside the model.</strong> The model assumes all AHL enters the cell, however the concentration needed in the model to obtain the desired results is changed by us accordingly. | + | <li> <strong>Cell membrane permeability to AHL is not considered inside the model.</strong> The model assumes all AHL enters the cell, however the concentration needed in the model to obtain the desired results is changed by us accordingly. <sup>2</sup><br> |
</li> | </li> | ||
<li> | <li> | ||
- | <div align="justify"> <strong>All decrease in AHL concentration is due to AiiA.</strong> We consider the natural degradation of AHL to be unimportant given the time taken to make the analysis (AHL half-life is long, from 3 to 24 hours). | + | <div align="justify"> <strong>All decrease in AHL concentration is due to AiiA.</strong> We consider the natural degradation of AHL to be unimportant given the time taken to make the analysis (AHL half-life is long, from 3 to 24 hours). <sup>3</sup> </div> |
</li> | </li> | ||
<li> | <li> | ||
Line 181: | Line 186: | ||
</li> | </li> | ||
<li> | <li> | ||
- | <div align="justify"> <strong>The quantity of nickel used by the cell is negligible compared to the concentrations in and out of the cell.</strong> This means we don’t need to include an equation describing the change in the Ni concentration due to cell consumption in the time used by the experiment. | + | <div align="justify"> <strong>The quantity of nickel used by the cell is negligible compared to the concentrations in and out of the cell.</strong> This means we don’t need to include an equation describing the change in the Ni concentration due to cell consumption in the time used by the experiment.<sup>1</sup> </div> |
</li> | </li> | ||
<li> | <li> | ||
Line 187: | Line 192: | ||
</li> | </li> | ||
<li> | <li> | ||
- | <div align="justify"> <strong>NikABCDE will not play a role in our model.</strong> NikABCDE serves to import nickel to the cell, however it only works in anaerobic conditions and our experiment will be made in aerobic conditions. This therefore implies that the nickel import will only take place by the unknown mechanism, which nonetheless is constant and constitutive. | + | <div align="justify"> <strong>NikABCDE will not play a role in our model.</strong> NikABCDE serves to import nickel to the cell, however it only works in anaerobic conditions and our experiment will be made in aerobic conditions. This therefore implies that the nickel import will only take place by the unknown mechanism, which nonetheless is constant and constitutive.<sup>1</sup> </div> |
</li> | </li> | ||
</ol> | </ol> | ||
Line 196: | Line 201: | ||
<p>2- Biological Sciences - Biophysics: Tianhai Tian and Kevin Burrage Stochastic models for regulatory networks of the genetic toggle switch PNAS 2006 103:8372-8377; published ahead of print May 19, 2006, doi:10.1073/pnas.0507818103 </p> | <p>2- Biological Sciences - Biophysics: Tianhai Tian and Kevin Burrage Stochastic models for regulatory networks of the genetic toggle switch PNAS 2006 103:8372-8377; published ahead of print May 19, 2006, doi:10.1073/pnas.0507818103 </p> | ||
<p>3- http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207 </p> | <p>3- http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207 </p> | ||
+ | <p><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | ||
<p><br> | <p><br> | ||
</p> | </p> | ||
Line 206: | Line 212: | ||
The complete model uses 18 kinetic parameters and 11 biochemical reactions. We got 13 of these parameters researching the literature, and of the other 5 we estimated 2. The remaining 3 we adjusted to the observed results. Reaction kinetics were gotten from the literature, and if no evidence was found then we assumed it to be Law of Mass Action.<br> | The complete model uses 18 kinetic parameters and 11 biochemical reactions. We got 13 of these parameters researching the literature, and of the other 5 we estimated 2. The remaining 3 we adjusted to the observed results. Reaction kinetics were gotten from the literature, and if no evidence was found then we assumed it to be Law of Mass Action.<br> | ||
<br> | <br> | ||
- | 1. Degradation of AHL by AiiA <br> | + | 1. <span class="style4">Degradation of AHL by AiiA</span></p> |
- | + | <table width="418" border="0"> | |
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="347"><table width="326" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">AiiA + AHL → AiiA</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="228">Michaelis-Menten<sup>1,2</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><em>k</em><sub>1cat</sub> = 27.97 s<sup>-1</sup> <br> | ||
+ | <em>K</em><sub>1m</sub> = 3.723 mM = 224.20427E5 molecules</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/9/9c/Eq1a.PNG" alt="Equation 1" width="151" height="40"></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <br> | ||
+ | <br> | ||
+ | <p align="justify">2. <span class="style4">Complex formation and dissociation between AHL and LuxR </span></p> | ||
+ | <table width="575" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="504"><table width="459" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">AHL + LuxR ↔ AHL:LuxR</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="361">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>2</sub> = 10 <sup>-5</sup> molecules<sup>-1</sup> s<sup>-1</sup> <br> | ||
+ | <em>k</em><sub>-2</sub> = 3.33 x 10 <sup>-3</sup> s<sup>-1</sup> | ||
+ | <br> | ||
+ | </p> </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/6/6b/Eq2a.PNG" alt="Equation 2" width="256" height="20"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><p align="justify">The complex formation is slow and its dissociation is fast, so with few AHL and LuxR the complex concentration is negligible. </p> </td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 2.1. <span class="style4"><strong>Dimer formation and dissociation between AHL:LuxR complexes</strong></span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="496" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">2 AHL:LuxR ↔ (AHL:LuxR):(AHL:LuxR)</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="398">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>2.1</sub> = 10 <sup>-5</sup> molecules<sup>-1</sup> s<sup>-1</sup> <br> | ||
+ | <em>k</em><sub>-2.1</sub> = 10 <sup>-2</sup> s<sup>-1</sup> <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/e/e7/Eq3a.PNG" alt="Equation 2.1" width="382" height="22"></td> | ||
+ | </tr> | ||
+ | |||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 3.1. <span class="style4">CI synthesis induced by AHL and LuxR complexes dimer</span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">ρcI + (AHL:LuxR):(AHL:LuxR) → ρcI + (AHL:LuxR):(AHL:LuxR) + CI</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td>Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>3on</sub> = 10 <sup>-2</sup> molecules<sup>-1</sup> s<sup>-1</sup> | ||
+ | <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/3/3d/Eq4a.PNG" alt="Equation 3.1" width="278" height="22"></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 3.2. <span class="style4">Constitutive CI synthesis</span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">ρcI → ρcI + CI</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>3off</sub> = 4 x 10 <sup>-2</sup> s<sup>-1</sup> <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/4/49/Eq5a.PNG" alt="Equation 3.2" width="108" height="24"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">To give more stability to the <em>off</em> state in the model, the rate constant in the presence of the inducer is lower than the constitutive rate constant, regardless the implication of a greater threshold to achieve the <em>on </em>state<sup>3</sup>.</div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 4. <span class="style4">Natural degradation of CI</span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">CI → Ø</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>4</sub> = 0.002888 <sup></sup> s<sup>-1</sup> <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/e/e5/Eq6a.PNG" alt="Equation 4" ></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">The half life of CI with LAA tail is 4 minutes<sup>8</sup>. Andersen JB <em>et al.</em><sup>9</sup> conclude that LAA tail and LVA tail modified the half life of GFP in a similar extent. Given this value, the rate constant was calculated..</div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 4.1. <span class="style4">Dimer formation and dissociation between CI molecules </span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">2 CI ↔ CI:CI</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>4.1</sub> = 0.00001 molecules<sup>-1</sup> <sup></sup> s<sup>-1</sup><br> | ||
+ | <em>k</em><sub>-4.1</sub> = 0.01 <sup></sup> s<sup>-1</sup><br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/7/72/Eq7.PNG" alt="Equation 4.1" width="193" height="24"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">Kenneth <em>et al.</em> estimated the change in free Gibbs energy in this reaction (with wildtype CI) as -11.1 kcal/mol,<sup>10</sup> which leads to an equilibrium constant of 8.32186E16 molecules<sup>-1</sup>. This implies that the forward rate constant should be at least sixteen orders of magnitude greater than the reverse rate constant, which means a constant repression of RcnA even with the constitutive CI synthesis. A parameter scan was run to determine the range of values that gives the desired behavior and the rate constants were chosen arbitrarily within this range. These values are comparable to others typical biochemical parameters. It has been shown that kinetic parameters can be modified by changing amino acid sequences (for example, CI half life is reduced by adding a LVA tail in the C-terminal), it’s proposed that it’s possible to engineer the protein to reach an acceptable dissociation constant. </div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 6. <span class="style4">RcnA production </span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">ρ → ρ + RcnA</div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Cooperative inhibition (Hill kinetics)<sup>4,5,6,7</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>n</em><sub>5</sub> =1.9<br> | ||
+ | <br> | ||
+ | <sup></sup><img src="https://static.igem.org/mediawiki/2008/4/4b/Eq9.1.PNG"><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2008/5/5f/Eq9.2.PNG" width="300" height="41"><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2008/c/c2/Eq9.3.PNG" width="300" height="39"> <sup><br> | ||
+ | </sup><br> | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/c/c6/Eq8.PNG" alt="Equation 6" width="199" height="49"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">ΔG<sub>CI:CI-OR1</sub>=-11.6 kcal/mol<br> | ||
+ | ΔG<sub>CI:CI-OR2</sub>=-10.1 kcal/mol<br> | ||
+ | ΔG<sub>CI:CI-OR1-OR2</sub>=-23.8 kcal/mol<br> | ||
+ | <em>ν</em><sub>6</sub>(<em>Pl</em>)=20mM/h=3346.111 molecules/s with 20 promoter copies (ρ<sub>0</sub>)<sup>7</sup>.<br> | ||
+ | The promoter in our construction is Pr, which is similar to Pl, the one used to estimated the parameter<sup>7</sup>.</div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 7. <span class="style4">Nickel efflux by RcnA </span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">RcnA + Ni<sub>int</sub> → RcnA + Ni<sub>ext</sub></div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>7</sub> = ? <br> | ||
+ | <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/a/a6/Eq10.PNG" width="139" height="21"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">Experimentally measured </div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 8.<span class="style4"> Natural degradation of RcnA </span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">RcnA → Ø<sub></sub></div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>8</sub> = 1.666E-4 s<sup>-1</sup> <br> | ||
+ | <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/0/0f/Eq11.PNG" width="96" height="22"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">This kinetic parameter wasn’t found in our bibliographic search and personal communication with Peter T. Chivers (Washington University School of Medicine) confirmed that this parameter is unknown. The value used is the degradation rate of LacY, the lactose permease of <em>E. coli</em>, which is also a transmembran protein.<sup>11</sup></div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p align="justify"><br> | ||
+ | 9.<span class="style4"> Nickel import by unknown channel </span></p> | ||
+ | <table width="577" border="0"> | ||
+ | <tr> | ||
+ | <td width="61"> </td> | ||
+ | <td width="506"><table width="457" border="0"> | ||
+ | <tr> | ||
+ | <td colspan="2"><div align="left" class="style5">Unk + Ni<sub>ext</sub> → Unk + Ni<sub>int</sub></div></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td width="88" valign="top"><strong>Kinetics:</strong></td> | ||
+ | <td width="359">Mass Action<sup>3</sup></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Parameters:</strong></td> | ||
+ | <td><p><em>k</em><sub>9</sub> = ? <sup></sup> <br> | ||
+ | <br> | ||
+ | </p></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Flux:</strong></td> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2008/9/9b/Eq12.PNG" width="131" height="22"></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td valign="top"><strong>Notes:</strong></td> | ||
+ | <td><div align="justify">Experimentally measured <sup></sup></div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p></p> | ||
<p align="justify"><br> | <p align="justify"><br> | ||
- | + | </p></td> | |
</tr> | </tr> | ||
<td class="pageName">Modeling details </td> | <td class="pageName">Modeling details </td> |
Revision as of 00:43, 28 October 2008
LCG-UNAM-Mexico | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
iGEM 2008 TEAM | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||