Team:LCG-UNAM-Mexico/Modeling

From 2008.igem.org

(Difference between revisions)
Line 24: Line 24:
color: #5C743D;
color: #5C743D;
}
}
 +
.style4 {
 +
font-size: 12px;
 +
font-weight: bold;
 +
}
 +
.style5 {font-size: 13px}
-->
-->
</style>
</style>
Line 127: Line 132:
                               <li> ρ </li>
                               <li> ρ </li>
                               <li> RcnA </li>
                               <li> RcnA </li>
-
                               <li> Ni[int]</li>
+
                               <li> Ni<sub>int</sub></li>
-
                               <li> Ni[ext] </li>
+
                               <li> Ni<sub>ext</sub> </li>
                               <li> Unk</li>
                               <li> Unk</li>
                 </ol>                </td>
                 </ol>                </td>
Line 167: Line 172:
               <ol>
               <ol>
                 <li>
                 <li>
-
                   <div align="justify"> <strong>Once there is nickel in the medium, RcnR no longer participates in the pump’s regulation.</strong> If there’s nickel in the medium, we can assume that RcnR is always  coupled with a Ni molecule, so it will not be capable of repressing  RcnA (The few RcnR molecules in the cell will cause noise, but this  will be indistinguishable from the pump’s normal behavior). [1]<strong></strong> </div>
+
                   <div align="justify"> <strong>Once there is nickel in the medium, RcnR no longer participates in the pump’s regulation.</strong> If there’s nickel in the medium, we can assume that RcnR is always  coupled with a Ni molecule, so it will not be capable of repressing  RcnA (The few RcnR molecules in the cell will cause noise, but this  will be indistinguishable from the pump’s normal behavior).<sup>1</sup><strong></strong> </div>
                 </li>
                 </li>
-
                 <li> <strong>Cell membrane permeability to AHL is not considered inside the model.</strong> The model assumes all AHL enters the cell, however the concentration  needed in the model to obtain the desired results is changed by us  accordingly. [2]<br>
+
                 <li> <strong>Cell membrane permeability to AHL is not considered inside the model.</strong> The model assumes all AHL enters the cell, however the concentration  needed in the model to obtain the desired results is changed by us  accordingly. <sup>2</sup><br>
                 </li>
                 </li>
                 <li>
                 <li>
-
                   <div align="justify"> <strong>All decrease in AHL concentration is due to AiiA.</strong> We consider the natural degradation of AHL to be unimportant given the  time taken to make the analysis (AHL half-life is long, from 3 to 24  hours). [3] </div>
+
                   <div align="justify"> <strong>All decrease in AHL concentration is due to AiiA.</strong> We consider the natural degradation of AHL to be unimportant given the  time taken to make the analysis (AHL half-life is long, from 3 to 24  hours). <sup>3</sup> </div>
                 </li>
                 </li>
                 <li>
                 <li>
Line 181: Line 186:
                 </li>
                 </li>
                 <li>
                 <li>
-
                   <div align="justify"> <strong>The quantity of nickel used by the cell is negligible compared to the concentrations in and out of the cell.</strong> This means we don’t need to include an equation describing the change  in the Ni concentration due to cell consumption in the time used by the  experiment. [1] </div>
+
                   <div align="justify"> <strong>The quantity of nickel used by the cell is negligible compared to the concentrations in and out of the cell.</strong> This means we don’t need to include an equation describing the change  in the Ni concentration due to cell consumption in the time used by the  experiment.<sup>1</sup> </div>
                 </li>
                 </li>
                 <li>
                 <li>
Line 187: Line 192:
                 </li>
                 </li>
                 <li>
                 <li>
-
                   <div align="justify"> <strong>NikABCDE will not play a role in our model.</strong> NikABCDE serves to import nickel to the cell, however it only works in  anaerobic conditions and our experiment will be made in aerobic  conditions. This therefore implies that the nickel import will only  take place by the unknown mechanism, which nonetheless is constant and  constitutive. [1] </div>
+
                   <div align="justify"> <strong>NikABCDE will not play a role in our model.</strong> NikABCDE serves to import nickel to the cell, however it only works in  anaerobic conditions and our experiment will be made in aerobic  conditions. This therefore implies that the nickel import will only  take place by the unknown mechanism, which nonetheless is constant and  constitutive.<sup>1</sup> </div>
                 </li>
                 </li>
               </ol>
               </ol>
Line 196: Line 201:
               <p>2- Biological Sciences - Biophysics: Tianhai Tian and Kevin Burrage Stochastic models for regulatory networks of the genetic toggle switch PNAS 2006 103:8372-8377; published ahead of print May 19, 2006, doi:10.1073/pnas.0507818103 </p>
               <p>2- Biological Sciences - Biophysics: Tianhai Tian and Kevin Burrage Stochastic models for regulatory networks of the genetic toggle switch PNAS 2006 103:8372-8377; published ahead of print May 19, 2006, doi:10.1073/pnas.0507818103 </p>
               <p>3- http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207 </p>
               <p>3- http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207 </p>
 +
              <p><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p>
               <p><br>
               <p><br>
               </p>
               </p>
Line 206: Line 212:
The complete model uses 18 kinetic parameters and 11 biochemical  reactions. We got 13 of these parameters researching the literature,  and of the other 5 we estimated 2. The remaining 3 we adjusted to the  observed results. Reaction kinetics were gotten from the literature,  and if no evidence was found then we assumed it to be Law of Mass  Action.<br>
The complete model uses 18 kinetic parameters and 11 biochemical  reactions. We got 13 of these parameters researching the literature,  and of the other 5 we estimated 2. The remaining 3 we adjusted to the  observed results. Reaction kinetics were gotten from the literature,  and if no evidence was found then we assumed it to be Law of Mass  Action.<br>
<br>
<br>
-
1. Degradation of AHL by AiiA <br>
+
1. <span class="style4">Degradation of AHL by AiiA</span></p>
-
          </p>
+
            <table width="418" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="347"><table width="326" border="0">
 +
                  <tr>
 +
                    <td colspan="2"><div align="left" class="style5">AiiA + AHL → AiiA</div></td>
 +
                  </tr>
 +
                  <tr>
 +
                    <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                    <td width="228">Michaelis-Menten<sup>1,2</sup></td>
 +
                  </tr>
 +
                  <tr>
 +
                    <td valign="top"><strong>Parameters:</strong></td>
 +
                    <td><em>k</em><sub>1cat</sub> = 27.97 s<sup>-1</sup>      <br>
 +
                        <em>K</em><sub>1m</sub> = 3.723 mM = 224.20427E5 molecules</td>
 +
                  </tr>
 +
                  <tr>
 +
                    <td valign="top"><strong>Flux:</strong></td>
 +
                    <td><img src="https://static.igem.org/mediawiki/2008/9/9c/Eq1a.PNG" alt="Equation 1" width="151" height="40"></td>
 +
                  </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <br>
 +
            <br>
 +
            <p align="justify">2. <span class="style4">Complex formation and dissociation between AHL and LuxR </span></p>
 +
            <table width="575" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="504"><table width="459" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">AHL + LuxR ↔ AHL:LuxR</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="361">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>2</sub> = 10 <sup>-5</sup> molecules<sup>-1</sup> s<sup>-1</sup>    <br>
 +
                        <em>k</em><sub>-2</sub> = 3.33 x 10 <sup>-3</sup> s<sup>-1</sup>  
 +
                        <br>
 +
                        </p>                      </td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/6/6b/Eq2a.PNG" alt="Equation 2" width="256" height="20"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><p align="justify">The complex formation is slow and its dissociation is fast, so with few AHL and LuxR the complex concentration is negligible. </p>                      </td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            2.1. <span class="style4"><strong>Dimer formation and dissociation between AHL:LuxR complexes</strong></span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="496" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">2 AHL:LuxR ↔ (AHL:LuxR):(AHL:LuxR)</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="398">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>2.1</sub> = 10 <sup>-5</sup> molecules<sup>-1</sup> s<sup>-1</sup>    <br>
 +
                              <em>k</em><sub>-2.1</sub> = 10 <sup>-2</sup> s<sup>-1</sup>   <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/e/e7/Eq3a.PNG" alt="Equation 2.1" width="382" height="22"></td>
 +
                    </tr>
 +
 
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            3.1. <span class="style4">CI synthesis induced by AHL and LuxR complexes dimer</span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">ρcI + (AHL:LuxR):(AHL:LuxR) → ρcI + (AHL:LuxR):(AHL:LuxR) + CI</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Kinetics:</strong></td>
 +
                      <td>Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>3on</sub> = 10 <sup>-2</sup> molecules<sup>-1</sup> s<sup>-1</sup>      
 +
                      <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/3/3d/Eq4a.PNG" alt="Equation 3.1" width="278" height="22"></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            3.2. <span class="style4">Constitutive CI synthesis</span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">ρcI → ρcI + CI</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>3off</sub> = 4 x 10 <sup>-2</sup> s<sup>-1</sup>       <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/4/49/Eq5a.PNG" alt="Equation 3.2" width="108" height="24"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">To give more stability to the <em>off</em> state in the model, the rate constant in the presence of the inducer is  lower than the constitutive rate constant, regardless the implication  of a greater threshold to achieve the <em>on </em>state<sup>3</sup>.</div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            4. <span class="style4">Natural degradation of  CI</span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">CI → Ø</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>4</sub> = 0.002888 <sup></sup> s<sup>-1</sup>       <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/e/e5/Eq6a.PNG" alt="Equation 4" ></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">The half life of CI with LAA tail is 4 minutes<sup>8</sup>. Andersen JB <em>et al.</em><sup>9</sup>  conclude that LAA tail and LVA tail modified the half life of GFP in a  similar extent. Given this value, the rate constant was calculated..</div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            4.1. <span class="style4">Dimer formation and dissociation between  CI molecules </span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">2 CI ↔ CI:CI</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>4.1</sub> = 0.00001 molecules<sup>-1</sup> <sup></sup> s<sup>-1</sup><br>
 +
                          <em>k</em><sub>-4.1</sub> = 0.01 <sup></sup> s<sup>-1</sup><br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/7/72/Eq7.PNG" alt="Equation 4.1" width="193" height="24"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">Kenneth <em>et al.</em> estimated the change in free Gibbs energy in this reaction (with wildtype CI) as -11.1 kcal/mol,<sup>10</sup> which leads to an equilibrium constant of 8.32186E16 molecules<sup>-1</sup>.  This implies that the forward rate constant should be at least sixteen orders of magnitude greater than the reverse rate constant, which means a constant repression of RcnA even with the constitutive CI synthesis.  A parameter scan was run to determine the range of values that gives the desired behavior and the rate constants were chosen arbitrarily  within this range. These values are comparable to others typical biochemical parameters. It has been shown that kinetic parameters can be modified by changing amino acid sequences (for example, CI half life is reduced by adding a LVA tail in the C-terminal), it’s proposed that  it’s possible to engineer the protein to reach an acceptable dissociation constant. </div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            6. <span class="style4">RcnA production </span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">ρ → ρ + RcnA</div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Cooperative inhibition (Hill kinetics)<sup>4,5,6,7</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>n</em><sub>5</sub> =1.9<br>
 +
                        <br>
 +
                        <sup></sup><img src="https://static.igem.org/mediawiki/2008/4/4b/Eq9.1.PNG"><br>
 +
                          <img src="https://static.igem.org/mediawiki/2008/5/5f/Eq9.2.PNG" width="300" height="41"><br>
 +
                          <img src="https://static.igem.org/mediawiki/2008/c/c2/Eq9.3.PNG" width="300" height="39">                      <sup><br>
 +
                              </sup><br>
 +
</p>
 +
                      </td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/c/c6/Eq8.PNG" alt="Equation 6" width="199" height="49"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">ΔG<sub>CI:CI-OR1</sub>=-11.6 kcal/mol<br>
 +
                        ΔG<sub>CI:CI-OR2</sub>=-10.1 kcal/mol<br>
 +
                          ΔG<sub>CI:CI-OR1-OR2</sub>=-23.8 kcal/mol<br>
 +
                          <em>ν</em><sub>6</sub>(<em>Pl</em>)=20mM/h=3346.111 molecules/s with 20 promoter copies (ρ<sub>0</sub>)<sup>7</sup>.<br>
 +
                        The promoter in our construction is Pr, which is similar to Pl, the one used to estimated the parameter<sup>7</sup>.</div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            7. <span class="style4">Nickel efflux by RcnA </span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">RcnA + Ni<sub>int</sub> → RcnA + Ni<sub>ext</sub></div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>7</sub> = ? <br>
 +
                      <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/a/a6/Eq10.PNG" width="139" height="21"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">Experimentally measured </div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            8.<span class="style4"> Natural degradation of RcnA </span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">RcnA → Ø<sub></sub></div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>8</sub> = 1.666E-4 s<sup>-1</sup> <br>
 +
                              <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/0/0f/Eq11.PNG" width="96" height="22"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">This kinetic parameter wasn’t found in our bibliographic search and personal communication with Peter T. Chivers  (Washington University School of Medicine) confirmed that this  parameter is unknown. The value used is the degradation rate of LacY,  the lactose permease of <em>E. coli</em>, which is also a transmembran protein.<sup>11</sup></div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p align="justify"><br>
 +
            9.<span class="style4"> Nickel import by unknown channel </span></p>
 +
            <table width="577" border="0">
 +
              <tr>
 +
                <td width="61">&nbsp;</td>
 +
                <td width="506"><table width="457" border="0">
 +
                    <tr>
 +
                      <td colspan="2"><div align="left" class="style5">Unk + Ni<sub>ext</sub> → Unk + Ni<sub>int</sub></div></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td width="88" valign="top"><strong>Kinetics:</strong></td>
 +
                      <td width="359">Mass Action<sup>3</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Parameters:</strong></td>
 +
                      <td><p><em>k</em><sub>9</sub> = ? <sup></sup> <br>
 +
                              <br>
 +
                      </p></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Flux:</strong></td>
 +
                      <td><img src="https://static.igem.org/mediawiki/2008/9/9b/Eq12.PNG" width="131" height="22"></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td valign="top"><strong>Notes:</strong></td>
 +
                      <td><div align="justify">Experimentally measured <sup></sup></div></td>
 +
                    </tr>
 +
                </table></td>
 +
              </tr>
 +
            </table>
 +
            <p></p>
             <p align="justify"><br>
             <p align="justify"><br>
-
              </p></td>
+
            </p></td>
</tr>
</tr>
         <td class="pageName">Modeling details </td>
         <td class="pageName">Modeling details </td>

Revision as of 00:43, 28 October 2008

LCG-UNAM-Mexico:Modeling

Header image
iGEM 2008 TEAM
line decor
  
line decor

 
 
 
 

 
 
ribbon

Modeling the system

The objective of our modelling is to accurately describe and predict the behavior of the system and its response given an inducing signal. Also, we aim to better know and understand the  system through the identification of critical parameters and species, and thus be able to obtain the desired dynamics.
Our system is composed of 13 species and 11 coupled biochemical reactions that completely describe it. This can be represented through a set of ordinary differential equations (ODEs). The simulations were done using Simbiology, a package from Matlab.

Iwig 2006

FIG 1: Our system is conformed by two regulation mechanisms. The first mechanism is the one controlled by us through AHL. LuxR and AiiA compete to bind AHL when it enters the cell. AiiA efficiently degrades AHL, while LuxR and AHL form a dimer. This dimer serves as an activator of cI*, which represses RcnA. The second of these mechanisms is the natural regulation of RcnA in response to the intracellular nickel concentration. When there is no nickel inside the cell, RcnR represses RcnA. However, when nickel enters the cell, it forms a dimer with RcnR and changes its conformation so it no longer represses RcnA. RcnA is then free to start pumping Ni out of the cell. We are keeping this because it is damaging to the bacteria to have the pump always on, and otherwise it would need a constant supply of AHL.

Metabolites and enzymes relevant to the model

  1. AiiA
  2. AHL
  3. LuxR
  4. AHL:LuxR
  5. (AHL:LuxR):(AHL:LUXR)
  6. ρcI
  7. CI
  8. CI:CI
  9. ρ
  10. RcnA
  11. Niint
  12. Niext
  13. Unk

Acyl-Homoserine Lactone Lactonase
Acyl-Homoserine Lactone
Transcriptional Activator
Complex formed by AHL and LuxR
Dimer of AHL:LuxR complexes
cI* promoter, inducible by the dimer of AHL:LuxR complexes
λ phage repressor (CI) modified with a LVA tail for quick degradation
Repressor, dimer of CI molecules
rcnA promoter, modified to be repressible by CI:CI
Escherichia coli nickel efflux pump
Intracellular nickel
Extracellular nickel
Unknown nickel import channel



Reactions

You can click on the next image to see a table of our reactions with their kinetics.

Table of biochemical reactions
* The equations are numbered like this because those we had initially defined evolved into this final list throughout the summer. We didn't want to change all references made to these equations so we just adjusted the numbering.

Ordinary Differential Equations

We are taking into account the following set of ODEs, based on the biochemical reactions above. This set accurately and completely describes our model. Please click on the image to see a higher resolution.


Set of ODEs


Assumptions of the model


  1. Once there is nickel in the medium, RcnR no longer participates in the pump’s regulation. If there’s nickel in the medium, we can assume that RcnR is always coupled with a Ni molecule, so it will not be capable of repressing RcnA (The few RcnR molecules in the cell will cause noise, but this will be indistinguishable from the pump’s normal behavior).1
  2. Cell membrane permeability to AHL is not considered inside the model. The model assumes all AHL enters the cell, however the concentration needed in the model to obtain the desired results is changed by us accordingly. 2
  3. All decrease in AHL concentration is due to AiiA. We consider the natural degradation of AHL to be unimportant given the time taken to make the analysis (AHL half-life is long, from 3 to 24 hours). 3
  4. The change in the transcription of cI* is only dependent on AHL concentration. There’s a basal production of cI*, however the change will always be due to the AHL concentration given that production of LuxR is constitutive.
  5. It is a homogeneous system. This means that the coefficients of the equations are constant (so we don’t have compartmentalization).
  6. The quantity of nickel used by the cell is negligible compared to the concentrations in and out of the cell. This means we don’t need to include an equation describing the change in the Ni concentration due to cell consumption in the time used by the experiment.1
  7. The production of RcnR, LuxR and AiiA is constitutive and their concentrations have reached the steady state at the beginning of the experiment.
  8. NikABCDE will not play a role in our model. NikABCDE serves to import nickel to the cell, however it only works in anaerobic conditions and our experiment will be made in aerobic conditions. This therefore implies that the nickel import will only take place by the unknown mechanism, which nonetheless is constant and constitutive.1
References

1- Nickel homeostasis in Escherichia coli – the rcnR-rcnA efflux pathway and its linkage to NikR function Jeffrey S. Iwig, Jessica L. Rowe and Peter T. Chivers* Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, 63110, USA. Molecular Microbiology (2006) 62(1), 252–262 doi:10.1111/j.1365-2958.2006.05369.x

2- Biological Sciences - Biophysics: Tianhai Tian and Kevin Burrage Stochastic models for regulatory networks of the genetic toggle switch PNAS 2006 103:8372-8377; published ahead of print May 19, 2006, doi:10.1073/pnas.0507818103

3- http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207

ribbon


Parameters & kinetics


The complete model uses 18 kinetic parameters and 11 biochemical reactions. We got 13 of these parameters researching the literature, and of the other 5 we estimated 2. The remaining 3 we adjusted to the observed results. Reaction kinetics were gotten from the literature, and if no evidence was found then we assumed it to be Law of Mass Action.

1. Degradation of AHL by AiiA

 
AiiA + AHL → AiiA
Kinetics: Michaelis-Menten1,2
Parameters: k1cat = 27.97 s-1      
K1m = 3.723 mM = 224.20427E5 molecules
Flux: Equation 1


2. Complex formation and dissociation between AHL and LuxR

 
AHL + LuxR ↔ AHL:LuxR
Kinetics: Mass Action3
Parameters:

k2 = 10 -5 molecules-1 s-1    
k-2 = 3.33 x 10 -3 s-1  

Flux: Equation 2
Notes:

The complex formation is slow and its dissociation is fast, so with few AHL and LuxR the complex concentration is negligible.


2.1. Dimer formation and dissociation between AHL:LuxR complexes

 
2 AHL:LuxR ↔ (AHL:LuxR):(AHL:LuxR)
Kinetics: Mass Action3
Parameters:

k2.1 = 10 -5 molecules-1 s-1    
k-2.1 = 10 -2 s-1  

Flux: Equation 2.1


3.1. CI synthesis induced by AHL and LuxR complexes dimer

 
ρcI + (AHL:LuxR):(AHL:LuxR) → ρcI + (AHL:LuxR):(AHL:LuxR) + CI
Kinetics: Mass Action3
Parameters:

k3on = 10 -2 molecules-1 s-1      

Flux: Equation 3.1


3.2. Constitutive CI synthesis

 
ρcI → ρcI + CI
Kinetics: Mass Action3
Parameters:

k3off = 4 x 10 -2 s-1      

Flux: Equation 3.2
Notes:
To give more stability to the off state in the model, the rate constant in the presence of the inducer is lower than the constitutive rate constant, regardless the implication of a greater threshold to achieve the on state3.


4. Natural degradation of CI

 
CI → Ø
Kinetics: Mass Action3
Parameters:

k4 = 0.002888 s-1      

Flux: Equation 4
Notes:
The half life of CI with LAA tail is 4 minutes8. Andersen JB et al.9 conclude that LAA tail and LVA tail modified the half life of GFP in a similar extent. Given this value, the rate constant was calculated..


4.1. Dimer formation and dissociation between CI molecules

 
2 CI ↔ CI:CI
Kinetics: Mass Action3
Parameters:

k4.1 = 0.00001 molecules-1 s-1
k-4.1 = 0.01 s-1

Flux: Equation 4.1
Notes:
Kenneth et al. estimated the change in free Gibbs energy in this reaction (with wildtype CI) as -11.1 kcal/mol,10 which leads to an equilibrium constant of 8.32186E16 molecules-1. This implies that the forward rate constant should be at least sixteen orders of magnitude greater than the reverse rate constant, which means a constant repression of RcnA even with the constitutive CI synthesis. A parameter scan was run to determine the range of values that gives the desired behavior and the rate constants were chosen arbitrarily within this range. These values are comparable to others typical biochemical parameters. It has been shown that kinetic parameters can be modified by changing amino acid sequences (for example, CI half life is reduced by adding a LVA tail in the C-terminal), it’s proposed that it’s possible to engineer the protein to reach an acceptable dissociation constant.


6. RcnA production

 
ρ → ρ + RcnA
Kinetics: Cooperative inhibition (Hill kinetics)4,5,6,7
Parameters:

n5 =1.9





Flux: Equation 6
Notes:
ΔGCI:CI-OR1=-11.6 kcal/mol
ΔGCI:CI-OR2=-10.1 kcal/mol
ΔGCI:CI-OR1-OR2=-23.8 kcal/mol
ν6(Pl)=20mM/h=3346.111 molecules/s with 20 promoter copies (ρ0)7.
The promoter in our construction is Pr, which is similar to Pl, the one used to estimated the parameter7.


7. Nickel efflux by RcnA

 
RcnA + Niint → RcnA + Niext
Kinetics: Mass Action3
Parameters:

k7 = ?

Flux:
Notes:
Experimentally measured


8. Natural degradation of RcnA

 
RcnA → Ø
Kinetics: Mass Action3
Parameters:

k8 = 1.666E-4 s-1

Flux:
Notes:
This kinetic parameter wasn’t found in our bibliographic search and personal communication with Peter T. Chivers (Washington University School of Medicine) confirmed that this parameter is unknown. The value used is the degradation rate of LacY, the lactose permease of E. coli, which is also a transmembran protein.11


9. Nickel import by unknown channel

 
Unk + Niext → Unk + Niint
Kinetics: Mass Action3
Parameters:

k9 = ?

Flux:
Notes:
Experimentally measured


Modeling details