Team:LCG-UNAM-Mexico/Modeling
From 2008.igem.org
Line 111: | Line 111: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText"><p align="justify">The objective of our | + | <td class="bodyText"><p align="justify">The objective of our modeling is to accurately describe and predict the behavior of the system and its response given an inducing signal. Also, we aim to better know and understand the system through the identification of critical parameters and species, and thus be able to obtain the desired dynamics.<br /> |
Our system is composed of 13 species and 11 coupled biochemical reactions that completely describe it. This can be represented through a set of ordinary differential equations (ODEs). The simulations were done using Simbiology, a package from Matlab.</p> | Our system is composed of 13 species and 11 coupled biochemical reactions that completely describe it. This can be represented through a set of ordinary differential equations (ODEs). The simulations were done using Simbiology, a package from Matlab.</p> | ||
<p align="center"> <img alt="Iwig 2006" src="https://static.igem.org/mediawiki/2008/4/47/Diagrama3.jpg"> </p> | <p align="center"> <img alt="Iwig 2006" src="https://static.igem.org/mediawiki/2008/4/47/Diagrama3.jpg"> </p> | ||
Line 195: | Line 195: | ||
</li> | </li> | ||
</ol> | </ol> | ||
- | <strong>References</strong><br> | + | <strong class="style2">References</strong><br> |
</div> | </div> | ||
<div id="lev4"> | <div id="lev4"> | ||
- | <p> 1 | + | <p> <strong>1. </strong> Iwig JS, Rowe JL and Chivers PT (2006) <strong>Nickel homeostasis in <em>Escherichia coli</em> – the rcnR-rcnA efflux pathway and its linkage to NikR function</strong> Mol Microbiol <strong> 62</strong>(1), 252–262.<br> |
- | < | + | <strong>2.</strong> Tian T and Burrage K (2006) <strong>Stochastic models for regulatory networks of the genetic toggle switch</strong> Proc Natl Acad Sci <strong>103</strong>(22):8372-8377.<br> |
- | < | + | <strong>3.</strong> Imperial College Team, iGEM 2006 WIKI. The I. CoLi Reporter (<a href="http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207">http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/parts/BBa_I13207</a>)</p> |
<p><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | <p><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | ||
<p><br> | <p><br> | ||
Line 543: | Line 543: | ||
<p align="justify"> The initial concentrations of the constitutive proteins (AiiA, LuxR, CI -constitutive synthesis- and CI:CI -due to constitutive synthesis-) were estimated based on the efficiency rate of their promoters, number of promoters per cell, degradation rate of their mRNAs, translation efficiency and degradation rate of the proteins. Initial concentrations of AHL:LuxR complex, the dimer of complexes, CI and CI:CI due to complex activation were set to 0, given these are all due to the action of AHL. Number of copies of both <em>cI</em> and <em>rcnA</em> promoters are 10 based on plasmid copy number. RcnA and Unk were estimated experimentally and set consistent to the observed rate. Concentration of AHL and nickel is determined by us to obtain the desired results. </p> | <p align="justify"> The initial concentrations of the constitutive proteins (AiiA, LuxR, CI -constitutive synthesis- and CI:CI -due to constitutive synthesis-) were estimated based on the efficiency rate of their promoters, number of promoters per cell, degradation rate of their mRNAs, translation efficiency and degradation rate of the proteins. Initial concentrations of AHL:LuxR complex, the dimer of complexes, CI and CI:CI due to complex activation were set to 0, given these are all due to the action of AHL. Number of copies of both <em>cI</em> and <em>rcnA</em> promoters are 10 based on plasmid copy number. RcnA and Unk were estimated experimentally and set consistent to the observed rate. Concentration of AHL and nickel is determined by us to obtain the desired results. </p> | ||
<p align="justify"> <span class="style3">AHL:</span> It’s an arbitrary and adjustable value. Different outcomes can be observed manipulating this initial value.<br> | <p align="justify"> <span class="style3">AHL:</span> It’s an arbitrary and adjustable value. Different outcomes can be observed manipulating this initial value.<br> | ||
- | <span class="style3">Nickel (total):</span> It’s an arbitrary and adjustable value. Different outcomes can be observed manipulating this initial value.<br> | + | <span class="style3"><br> |
- | <span class="style3">Unk:</span> Both the Unk concentration and its rate constant are unknown. They are arbitrarily defined in such a way that the flux of the reaction 9 is consistent with experimental measurements.<br> | + | Nickel (total):</span> It’s an arbitrary and adjustable value. Different outcomes can be observed manipulating this initial value.<br> |
+ | <span class="style3"><br> | ||
+ | Unk:</span> Both the Unk concentration and its rate constant are unknown. They are arbitrarily defined in such a way that the flux of the reaction 9 is consistent with experimental measurements.<br> | ||
| | ||
<strong>[Unk]</strong>= (SLOPE) molecules<br> | <strong>[Unk]</strong>= (SLOPE) molecules<br> | ||
- | <span class="style3">Ni<sub>int</sub>:</span> The initial concentration of Nickel inside the cell is estimated based on experimental measurements in absence of AHL.<br> | + | <span class="style3"><br> |
+ | Ni<sub>int</sub>:</span> The initial concentration of Nickel inside the cell is estimated based on experimental measurements in absence of AHL.<br> | ||
+ | | ||
<strong>[Ni<sub>int</sub>]</strong>= (SLOPE) molecules<br> | <strong>[Ni<sub>int</sub>]</strong>= (SLOPE) molecules<br> | ||
- | <span class="style3">ρ and ρCI:</span> Their concentration is defined by the copy number of the plasmids that contain them.<br> | + | <span class="style3"><br> |
+ | ρ and ρCI:</span> Their concentration is defined by the copy number of the plasmids that contain them.<br> | ||
<strong>[ρ]</strong>= 10 molecules<br> | <strong>[ρ]</strong>= 10 molecules<br> | ||
<strong>[ρcI]</strong>= 10 molecules<br> | <strong>[ρcI]</strong>= 10 molecules<br> | ||
- | <span class="style3">CI and CI:CI:</span> Given the constitutive synthesis and degradation rate of CI, as well as its dimerization constant, CI and CI:CI concentrations are estimated in absence of AHL.<br> | + | <span class="style3"><br> |
+ | CI and CI:CI:</span> Given the constitutive synthesis and degradation rate of CI, as well as its dimerization constant, CI and CI:CI concentrations are estimated in absence of AHL.<br> | ||
<strong>[CI]</strong>= 138 molecules<br> | <strong>[CI]</strong>= 138 molecules<br> | ||
<strong>[CI:CI]</strong>= 19 molecules<br> | <strong>[CI:CI]</strong>= 19 molecules<br> | ||
- | <span class="style3">RcnA:</span> Given the synthesis and degradation rate of RcnA, as well as the constitutive concentration of CI:CI, RcnA concentration is estimated in absence of AHL.<br> | + | <span class="style3"><br> |
+ | RcnA:</span> Given the synthesis and degradation rate of RcnA, as well as the constitutive concentration of CI:CI, RcnA concentration is estimated in absence of AHL.<br> | ||
<strong>[RcnA]</strong>= 33150 molecules<br> | <strong>[RcnA]</strong>= 33150 molecules<br> | ||
- | <span class="style3">AiiA:</span> The constant concentration of AiiA is calculated taking into account the following parameters retrieved from literature:<br> | + | <span class="style3"><br> |
+ | AiiA:</span> The constant concentration of AiiA is calculated taking into account the following parameters retrieved from literature:<br> | ||
- pLac average transcription rate<sup>1,2</sup>: 0.003 s<sup>-1</sup><br> | - pLac average transcription rate<sup>1,2</sup>: 0.003 s<sup>-1</sup><br> | ||
- mRNA average degradation rate<sup>1,3</sup>: 0.00766 s<sup>-1</sup><br> | - mRNA average degradation rate<sup>1,3</sup>: 0.00766 s<sup>-1</sup><br> | ||
Line 564: | Line 572: | ||
The half life of RcnA with LVA tail is approximately 2 minutes<sup>14</sup>; Andersen JB et al. found that this tail reduces the half life of GFP forty-eight times.9 Therefore the half life of wildtype AiiA can be estimated to 96 minutes.<br> | The half life of RcnA with LVA tail is approximately 2 minutes<sup>14</sup>; Andersen JB et al. found that this tail reduces the half life of GFP forty-eight times.9 Therefore the half life of wildtype AiiA can be estimated to 96 minutes.<br> | ||
<strong> [AiiA]</strong>= 10000 molecules<br> | <strong> [AiiA]</strong>= 10000 molecules<br> | ||
- | <span class="style3">LuxR:</span> The constant concentration of LuxR is calculated taking into account the following parameters retrieved from literature:<br> | + | <span class="style3"><br> |
+ | LuxR:</span> The constant concentration of LuxR is calculated taking into account the following parameters retrieved from literature:<br> | ||
- pTet average transcription rate<sup>12,15</sup>: 0.003 s<sup>-1</sup><br> | - pTet average transcription rate<sup>12,15</sup>: 0.003 s<sup>-1</sup><br> | ||
- mRNA average degradation rate<sup>13</sup>: 0.00766 s<sup>-1</sup><br> | - mRNA average degradation rate<sup>13</sup>: 0.00766 s<sup>-1</sup><br> | ||
Line 571: | Line 580: | ||
<strong> [LuxR]</strong>= 22000 molecules<br> | <strong> [LuxR]</strong>= 22000 molecules<br> | ||
</p> | </p> | ||
- | <p></p> | + | <p> <span class="style2"><strong>References</strong></span><strong><br> |
+ | </strong><strong>1. </strong>Wang LH <em>et al</em>. (2004) <strong>Specificity and Enzyme Kinetics of the Quorum-quenching <em>N-</em>Acyl Homoserine Lactone Lactonase (AHL-Lactonase). </strong>J Biol Chem <strong>279:</strong>4, 13645-13651. <br> | ||
+ | <strong>2. </strong>Hee Kim <em>et al. </em>(2005) <strong>The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase.</strong> Proc Natl Acad Sci USA 102:49, 17606-17611. <br> | ||
+ | <strong>3. </strong>Goryachev AB, Toh DJ, Lee T (2006). <strong>Systems analysis of a quorum sensing network: Design constraints imposed by the functional requirements, network topology and kinetic constants.</strong> Biosystems 83, 178-187. <strong>4. </strong>Babic AC, Little JW (2007) <strong>Cooperative binding by CI repressor is dispensable in a phage </strong><strong>λ </strong><strong>variant. </strong>Proc Natl Acad Sci USA 104: 17741-17746. <br> | ||
+ | <strong>5. </strong>Ackers GK, Johnson AD, Shea MA (1982). <strong>Quantitative model for gene regulation by </strong><strong>λ</strong> <strong>phage repressor.</strong>Proc Natl Acad Sci USA 79: 1129-1133. <br> | ||
+ | <strong>6. </strong>Reinitz J, Vaisnys JR (1990) <strong>Theoretical and Experimental Analysis of the Phage Lambda Genetic Switch Implies Missing Levels of Co-operativity</strong>. J Theor Biol 145: 295-318. <br> | ||
+ | <strong>7. </strong>Iadevaia S, Mantzaris NV (2006) <strong>Genetic Network Driven Control of PHBV Copolymer Composition. </strong>J Biotechnol 122: 99-121. <br> | ||
+ | <strong>8. </strong>Elowitz MB & Leibler S (2000). <strong>A synthetic oscillatory network of transcriptional regulators. </strong>Nature 403 335-338. <br> | ||
+ | <strong>9. </strong>Andersen JB <em>et al </em> (1998). <strong>New Unstable of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. </strong> Appl Environ Microbiol 64,6: 2240-2246. <br> | ||
+ | <strong>10. </strong>Kenneth S.<strong> </strong>Koblan and Gary K. Ackers (1991) <strong>Energetics of Subunit Dimerization in Bacteriophage </strong><strong>λ </strong><strong>cI </strong><strong>Repressor: Linkage to</strong><strong> </strong><strong>Protons, Temperature, and KCl.</strong> Biochemistry 1991, 30, 7817-7821. <br> | ||
+ | <strong>11. </strong>M. Santillán and M. C. Mackey (2004). <strong>Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.</strong> Biophys J. 86: 1282-1292 <br> | ||
+ | <strong>12. </strong>Malan, T. P., A. Kolb, H. Buc, and W. R. McClure (1984). <strong>Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter.</strong> J. Mol. Biol. 180:881–909. <br> | ||
+ | <strong>13. </strong>Kennell, D., and H. Riezman (1977). <strong>Transcription and translation initiation frequencies of the <em>Escherichia coli</em> lac operon.</strong> J. Mol. Biol. 114:1–21. <br> | ||
+ | <strong>14. </strong>Christopher Batten. <strong>Modeling the Lux/AiiA Relaxation Oscillator</strong><strong>.</strong> Unpublished (<a href="http://www.mit.edu/%7Ecbatten/work/ssbc04/modeling-ssbc04.pdf">http://www.mit.edu/~cbatten/work/ssbc04/modeling-ssbc04.pdf</a>). <br> | ||
+ | <strong>15. </strong>Bologna Cesena Campus, iGEM 2007 WIKI. (<u><a href="http://parts.mit.edu/igem07/index.php/Bologna">http://parts.mit.edu/igem07/index.php/Bologna</a></u>) <br> | ||
+ | <strong>16. </strong>KULeuven team, iGEM 2008 WIKI. Dr. Coli, the bacterial drug delivery system. (<a href="https://2008.igem.org/Team:KULeuven/Model/CellDeath" target="_blank">https://2008.igem.org/Team:KULeuven/Model/CellDeath</a>) </p> | ||
<p align="justify"><br> | <p align="justify"><br> | ||
- | + | <img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<p align="justify"><br> | <p align="justify"><br> | ||
</p></td> | </p></td> | ||
</tr> | </tr> | ||
- | <td class="pageName"> | + | <td class="pageName"><div align="center">Simulation & Analysis </div></td> |
</table> | </table> | ||
- | < | + | <div align="justify"> |
- | + | <p><br> | |
+ | <span class="bodyText">With the aim of predicting the behavior of the system, the biochemical reactions were implemented in the SimBiology package of MATLAB, using the previously defined parameters (link a parameters and kinetics). Simulations were run for different values of the initial concentration of AHL and Ni<sub>total</sub> (Ni<sub>int</sub> + Ni<sub>ext</sub>) which are the metabolites that we can directly manipulate in our experiments. A parameter scan was also run for some parameters to understand their influence on the system.</span><br> | ||
+ | <span class="bodyText">In order to gain insights into the system dynamics to elucidate the conditions needed to get the desired behavior, we performed a series of analysis on it: sensitivity analysis allowed us to identify critical parameters that needed to be defined on the most stringent way. Basis for the (right) null and left null space were calculated to obtain information about the general network behavior. Steady-states were calculated by numerical integration of the non-linear ODEs system. Finally the Jacobian of the system was calculated around the steady-states. All simulations and analysis were implemented and performed on MATLAB.</span></p> | ||
+ | <p> <span class="style2">Simulation and parameter scan</span><br> | ||
+ | <br> | ||
+ | <span class="bodyText">Describir el comportamiento que queremos ver y por qué.<br> | ||
+ | Incluir las gráficas de parameter scan, la gráfica de la vida, y el escaneo con el que definimos algunas constantes </span></p> | ||
+ | <p class="style2"> Sensitivity analysis </p> | ||
+ | <p> Definir brevemente de que se trata, mostrar análisis a diferentes tiempos. Señalar los resultados que esperábamos y los que no</p> | ||
+ | <p class="style2"> Stoichiometric matrix </p> | ||
+ | <p class="bodyText"> Definir la información que contiene la matriz estequimétrica. <br> | ||
+ | Definir los espacios nulos (link a wikipedia o matworld?) <br> | ||
+ | Presentar las bases calculadas y una interpretación concisa </p> | ||
+ | <p class="style2"> Steady-states </p> | ||
+ | <p> <span class="bodyText">Definir estado estacionario, decir algo de la complejidad del problema y justificar la estrategia elegida (aproximación numérica)</span></p> | ||
+ | <p> Presentar la solución ontenida. </p> | ||
+ | <p class="style2"> Jacobian </p> | ||
+ | <p class="bodyText"> Definición general del jacobiano (link a wikipedia o mathworld?). Definición en redes bioquímicas. <br> | ||
+ | Presentar el método para calcularlo y las matrices modales, junto con su interpretación y las escalas de tiempo. <br> | ||
+ | Si da tiempo poner algo de análiss de estabilidad del estado estacionario (lo más probable s que no sea estable).<br> | ||
+ | </p> | ||
+ | <p> </p> | ||
+ | <p><br /> | ||
+ | </p> | ||
+ | </div> | ||
<td width="132"> </td> | <td width="132"> </td> | ||
</tr> | </tr> |
Revision as of 04:31, 28 October 2008
LCG-UNAM-Mexico | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
iGEM 2008 TEAM | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Simulation and parameter scan Sensitivity analysis Definir brevemente de que se trata, mostrar análisis a diferentes tiempos. Señalar los resultados que esperábamos y los que no Stoichiometric matrix Definir la información que contiene la matriz estequimétrica. Steady-states Definir estado estacionario, decir algo de la complejidad del problema y justificar la estrategia elegida (aproximación numérica) Presentar la solución ontenida. Jacobian Definición general del jacobiano (link a wikipedia o mathworld?). Definición en redes bioquímicas.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||