Team:LCG-UNAM-Mexico/Notebook/2008-October
From 2008.igem.org
Line 204: | Line 204: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="subHeader" bgcolor="#99CC66" id=" | + | <td class="subHeader" bgcolor="#99CC66" id="17">2008-10-17</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText"><p>-</p> | + | <td class="bodyText"><p> </p> |
+ | <p><strong>Stechiometric Matrix</strong></p> | ||
+ | <p> <em>Palsson, 2006</em></p> | ||
+ | <p>Flux vector -> <strong>v</strong>=(v1, v2, …, vn) <br /> | ||
+ | Concentration vector -> <strong>x</strong>=(x1, x2, …, xm) <br /> | ||
+ | -> δ<strong>x</strong>/δt = S·<strong>v</strong></p> | ||
+ | <p>δxi/δt=∑Sikvk</p> | ||
+ | <p><strong>The four fundamental subspaces</strong></p> | ||
+ | <p> </p> | ||
+ | <strong> | ||
+ | <div id="q_q6"><img src="http://docs.google.com/File?id=dntmktb_109dwhwh6dd_b" alt="" /></div> | ||
+ | <br /> | ||
+ | </strong> | ||
+ | </p> | ||
+ | The vector produced by a linear transformation is in two orthogonal spaces (the column and left null spaces), called the <em>domain</em>, and the vector being mapped is also in two orthogonal spaces (the row and null spaces), called the <em>codomain</em> or the <em>range</em> of the transformation. | ||
+ | <p>The vectors in the left null space (<strong>l</strong><em>i</em>) represent a mass conservation.</p> | ||
+ | <p>The flux vector can be decomposed into a dynamic component and a steady-state component: <br /> | ||
+ | v = vdyn + vss</p> | ||
+ | <p>The steady state component satisfies Svss=0 and <strong>v</strong>ss is thus in the null space of <strong>S.</strong></p> | ||
+ | <p> </p> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="subHeader" bgcolor="#99CC66" id=" | + | <td class="subHeader" bgcolor="#99CC66" id="20">2008-10-20</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText"><p>-</p> | + | <td class="bodyText"><p> </p> |
+ | <p>The higher the number of independent reaction vectors, the smaller the orthogonal left null space. The higher the number of independent reactions, the fewer conservation quantities exist.</p> | ||
+ | <p> <strong>FUNDAMENTAL SUBSPACES OF S</strong></p> | ||
+ | <p>The dimensions of both the column and row space is r (<em>rank</em>; number of linearly independent rows and columns that the matrix contains). <br /> | ||
+ | dim(Col(S)) = dim(Row(S)) = r <br /> | ||
+ | Since the dimension of the concentration vector is m, we have <br /> | ||
+ | dim(Left Null(S)) = m− r <br /> | ||
+ | Similarly, the flux vector is n-dimensional; thus, <br /> | ||
+ | dim(Null(S)) = n – r</p> | ||
+ | <p><img alt="*" width="11" height="11" /> <em>Null space</em>. The null space of <strong>S </strong>contains all the steady-state flux distributions allowable in the network. The steady state is of much interest since most homeostatic states are close to being steady states.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> <em>Row space</em>. The row space of <strong>S </strong>contains all the dynamic flux distributions of a network and thus the thermodynamic driving forces that change the rate of reaction activity.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> <em>Left null space</em>. The left null space of <strong>S </strong>contains all the conservation relationships, or <em>time invariants</em>, that a network contains. The sum of conserved metabolites or conserved metabolic pools do not change with time and are combinations of concentration variables.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> <em>Column space</em>. The column space of <strong>S </strong>contains all the possible time derivatives of the concentration vector and thus shows how the thermodynamic driving forces move the concentration state of the network.</p> | ||
+ | <p><strong>Singular Value Decomposition</strong></p> | ||
+ | <p>SVD states that for a matrix S of dimension m× n and of rank r, there are orthonormal matrices U (of dimension m ×m) and V (of dimension n × n) and a matrix with diagonal elements ∑ = diag(σ1, σ2, ... , σr ) with σ1 ≥ σ2 ≥ ··· ≥ σr > 0 such that S = U∑VT</p> | ||
+ | <p>A non-negative real number σ is a <strong>singular value</strong> for <em>M</em> if and only if there exist unit-length vectors <em>u</em> in <em>Km</em> and <em>v</em> in <em>Kn</em> such that <br /> | ||
+ | Mv=σu and M*u=σv<br /> | ||
+ | The vectors <em>u</em> and <em>v</em> are called <strong>left-singular</strong> and <strong>right-singular vectors</strong> for σ, respectively. <br /> | ||
+ | In any singular value decomposition <br /> | ||
+ | M=UΣV*<br /> | ||
+ | the diagonal entries of Σ are necessarily equal to the singular values of <em>M</em>. The columns of <em>U</em> and <em>V</em> are, respectively, left- and right-singular vectors for the corresponding singular values.</p> | ||
+ | <p></p> | ||
+ | <div id="vnuf"><img src="http://docs.google.com/File?id=dntmktb_110hsrd79d6_b" /></div> | ||
+ | <div id="jlkw"><img src="http://docs.google.com/File?id=dntmktb_111frgwdrmp_b" /></div> | ||
+ | </p> | ||
+ | <p> The columns of <strong>U </strong>are called the <em>left singular vectors </em>and the columns of <strong>V </strong>are the <em>right singular vectors</em>. The columns of <strong>U </strong>and <strong>V </strong>give orthonormal bases for all the four fundamental subspaces of <strong>S </strong>(see Figure 8.3). The first <em>r </em>columns of <strong>U </strong>and <strong>V </strong>give orthonormal bases for the column and row spaces, respectively. The last<em>m</em>− <em>r </em>columns of <strong>U </strong>give an orthonormal basis for the left null space, and the last <em>n </em>− <em>r </em>columns or <strong>V </strong>give an orthonormal basis for the null space.</p> | ||
+ | <p> </p> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="subHeader" bgcolor="#99CC66" id=" | + | <td class="subHeader" bgcolor="#99CC66" id="21">2008-10-21</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText"><p>-</p> | + | <td class="bodyText"><p> </p> |
+ | <p><strong>THE (RIGTH) NULL SPACE OF S</strong></p> | ||
+ | <p>The right null space of <strong>S </strong>is defined by <br /> | ||
+ | <strong>Sv</strong>ss = <strong>0 <br /> | ||
+ | </strong>Thus, all the steady-state flux distributions, <strong>v</strong>ss, are found in the null space. The null space has a dimension of <em>n </em>− <em>r</em>. Note that <strong>v</strong>ss must be orthogonal to all the rows of <strong>S </strong>simultaneously and thus represents a linear combination of flux values on the reaction map that sum to zero.</p> | ||
+ | <p><strong>Mathematics versus biology</strong> </p> | ||
+ | <p><img alt="*" width="11" height="11" /> The null space represents all the possible functional, or phenotypic, states of a network.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> A particular point in the polytope represents one network function or one particular phenotypic state.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> As we will see in Chapter 16, there are equivalent points in the cone that lead to the same overall functional state of a network. Biologically, such conditions are called <em>silent phenotypes</em>.</p> | ||
+ | <p><img alt="*" width="11" height="11" /> The edges of the flux cone are the unique extreme pathways. Any flux state in the cone can be decomposed into the extreme pathways. The unique set of extreme pathways thus gives a mathematical description of the range of flux levels that are allowed.</p> | ||
+ | <p>- The stoichiometric matrix has a null space that corresponds to a linear combination of the reaction vectors that add up to zero; so-called link-neutral combinations.</p> | ||
+ | <p>- The orthonormal basis given by SVD does not yield a useful biochemical interpretation of the null space of the stoichiometric matrix.</p> | ||
+ | <p><strong>THE LEFT NULL SPACE OF S</strong></p> | ||
+ | <p><u>As with the (right) null space, the choice of basis for the left null</u><u> space is important in describing its contents in biochemically and biologically meaningful terms.</u></p> | ||
+ | <p>…may represent mass conservation…</p> | ||
+ | <p> <strong>THE ROW AND COLUMN SPACE OF S</strong></p> | ||
+ | <p>The column and row spaces of the stoichiometric matrix contain the concentration time derivatives and the thermodynamic driving forces, respectively.</p> | ||
+ | <p> </p> | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 17:19, 28 October 2008
LCG-UNAM-Mexico | |||||||||||||||||||||||||||||||||||
iGEM 2008 TEAM | |||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||