Team:Paris/Modeling/f8

From 2008.igem.org

(Difference between revisions)
Line 1: Line 1:
{{Paris/Menu}}
{{Paris/Menu}}
-
{{Paris/Header|Method & Algorithm : ƒ6}}
+
{{Paris/Header|Method & Algorithm : ƒ8}}
-
[[Image:f6DCA.png|thumb|Specific Plasmid Characterisation for ƒ6]]
+
[[Image:f6DCA.png|thumb|Specific Plasmid Characterisation for ƒ8]]
We have <span style="color:#0000FF;">[''FlhDC'']<sub>''real''</sub> = {coef<sub>''flhDC''</sub>} &#131;1([aTc]<sub>i</sub>)</span>
We have <span style="color:#0000FF;">[''FlhDC'']<sub>''real''</sub> = {coef<sub>''flhDC''</sub>} &#131;1([aTc]<sub>i</sub>)</span>
Line 13: Line 13:
So, at steady-states,
So, at steady-states,
-
[[Image:F6.jpg|center]]
+
[[Image:F8.jpg|center]]
<br>
<br>
<div style="text-align: center">
<div style="text-align: center">
-
{{Paris/Toggle|Table|Team:Paris/Modeling/More_f6_Table}}  
+
{{Paris/Toggle|Table|Team:Paris/Modeling/More_f8_Table}}  
</div>
</div>
Line 28: Line 28:
Then, if we have time, we want to verify the expected relation
Then, if we have time, we want to verify the expected relation
-
[[Image:SumpFlgA.jpg|center]]
+
[[Image:SumpFlhB.jpg|center]]
<br>
<br>

Revision as of 14:24, 29 October 2008

Method & Algorithm : ƒ8


Specific Plasmid Characterisation for ƒ8

We have [FlhDC]real = {coefflhDC} ƒ1([aTc]i) and [FliA]real = {coeffliA} ƒ2([arab]i)

but we use [aTc]i = Inv_ƒ1( [FlhDC] ) and [arab]i = Inv_ƒ2( [FliA] )

So, at steady-states,

F8.jpg


↓ Table ↑


param signification unit value comments
(fluorescence) value of the observed fluorescence au need for 20 mesures with well choosen values of [aTc]i
and for 20 mesures with well choosen values of [arab]i
and 5x5 measures for the relation below?
conversion conversion ratio between
fluorescence and concentration
↓ gives ↓
nM.au-1 (1/79.429)
[GFP] GFP concentration at steady-state nM
γGFP dilution-degradation rate
of GFP(mut3b)
↓ gives ↓
min-1 0.0198 Time Cell Division : 35 min.
ƒ8 activity of
pFlhB with RBS E0032
nM.min-1



param signification
corresponding parameters in the equations
unit value comments
β30 total transcription rate of
FlhDC><pFlhB with RBS E0032
β30
nM.min-1
(K5/{coeffliA}) activation constant of FlhDC><pFlhB
K5
nM
n5 complexation order of FlhDC><pFlhB
n5
no dimension
β31 total transcription rate of
FlhDC><pFlhB with RBS E0032
β31
nM.min-1
(K11/{coefflhDC}) activation constant of FlhDC><pFlhB
K11
nM
n11 complexation order of FlhDC><pFlhB
n11
no dimension


↓ Algorithm ↑


find_ƒP

function optimal_parameters = find_FP(X_data, Y_data, initial_parameters)
% gives the 'best parameters' involved in f4, f5, f6, f7 or f8  
% with FlhDC = 0 or FliA = 0 by least-square optimisation
 
% X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally
% controled)
% Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8
% corresponding of the X_data
% initial_parameters = values of the parameters proposed by the literature
%                       or simply guessed
%                    = [beta, K -> (K)/(coef), n]
 
     function output = act_pProm(parameters, X_data)
         for k = 1:length(X_data)
                 output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3));
         end
     end
 
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
% options for the function lsqcurvefit
 
optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),...
     initial_parameters, X_data, Y_data, options );
% search for the fittest parameters, between 1/10 and 10 times the initial
% parameters
 
end

Then, if we have time, we want to verify the expected relation

SumpFlhB.jpg


<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |