Team:Paris/Perspectives

From 2008.igem.org

(Difference between revisions)
(Bibliography)
(Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways)
Line 12: Line 12:
== Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways ==
== Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways ==
Human overpopulation combined with the current lifestyle urges the rational, efficient, and sustainable use of natural resources to produce environmentally friendly plastic materials such as polyhydroxyalkanoic acids (PHAs), whose production/degradation cycle reduces undesirable wastes and emissions.
Human overpopulation combined with the current lifestyle urges the rational, efficient, and sustainable use of natural resources to produce environmentally friendly plastic materials such as polyhydroxyalkanoic acids (PHAs), whose production/degradation cycle reduces undesirable wastes and emissions.
-
Our study is a new metabolic strategy to generate PHA-hyperproducer strains, that have the properties to be a sequential metabolic pathway, we believe the sequential expression may increases the  production of purified PHA.
+
we hope that if we applied our system to pathways that have differentes cross linked intermediaries like the biosynthesis of PHA (figure 1), by the FIFO we will optimized the expression of the differentes genes in order to avoid waste producte that will increase impurities.
-
 
+
Our strategy consists on replacing  the RFP,CFP and YFP genes by the PhaA ,PhaB and PhaC genes in our final system (containing oscillation,FIFO,synchronisation modules).
Our strategy consists on replacing  the RFP,CFP and YFP genes by the PhaA ,PhaB and PhaC genes in our final system (containing oscillation,FIFO,synchronisation modules).
Line 19: Line 18:
*First, in this application the NADPH, which is a cellular metastable  fuel, is used by  the PhaB to  synthesize bioplastic. This molecule is very important for many metabolic pathways in bacteria. A NADPH recuperation step is then needed to ensure other metabolic activities to go on. We can then make the hypothesis that if the PhaB is always  activated the bacteria will get exhausted and die quickly. In our system, the bacteria will have a NADPH recuperation step, this is why we hope bacteria will live more than in an usual chemoreactor.
*First, in this application the NADPH, which is a cellular metastable  fuel, is used by  the PhaB to  synthesize bioplastic. This molecule is very important for many metabolic pathways in bacteria. A NADPH recuperation step is then needed to ensure other metabolic activities to go on. We can then make the hypothesis that if the PhaB is always  activated the bacteria will get exhausted and die quickly. In our system, the bacteria will have a NADPH recuperation step, this is why we hope bacteria will live more than in an usual chemoreactor.
-
*Secondly, we hope  by the order of the FIFO to make a synchronized and sequential expression in order to increase the rate of the PHA biosynthesis.
+
*Secondly, we hope that our system will increase the purity and the rate of PHA obtain because we don't activate the 3 genes simultaneously, instead of that we activate by a FIFO order system the 3 genes  so we will avoid lost of acetoacetylcoA or others important intermediary product  in  others metabolic pathways.
-
*Third, as the quality of the bioplastic increases with time, we could predict the quality of the final  product since we would know the duration of a production cycle thanks to the periodicity of our system.
 
-
<span style="color: blue"> Again, you cannot just state this boldly without constructing an argument. </span>
 
-
<span style="color: blue"> You never explain why your system is better than simply expressing all the genes continuously at a lower level </span>
+
[[Image:PHA.jpg|center]]
-
<span style="color: blue"> More generally, on this whole page: We don't expect you to give very detailed projects. You just need to give simple ideas for which the interest of the FIFO seems obvious (or at least you need to try making it seem obvious). We are not so much interested in the precise mechanisms or genes involved, but rather in the principles that make your projects interesting.</span>
+
In conclusion,our bacterioclock can be use to obtain many polymers or proteins fibers that their production pass by a lot of methabolic cross linked intermediary, in those situations the FIFO order may optimized the purity and the rate of the final products.
-
 
+
-
[[Image:PHA.jpg|center]]
+
== Bibliography ==
== Bibliography ==

Revision as of 23:15, 29 October 2008

Un petit texte pour expliquer la motivation de cette page ne serait-ce que tout simplement: On this page we report some possible uses of the FIFO device in synthetic applications.

General comment: I am not at all against an explorative, speculative section. But it's purpose must be clear very clearly focussed on the interest of the FIFO for putative applications. Discuss each time why the FIFO could be especially interesting for your application. This must be very clear in order for this section to fulfill it's purpose.



Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways

Human overpopulation combined with the current lifestyle urges the rational, efficient, and sustainable use of natural resources to produce environmentally friendly plastic materials such as polyhydroxyalkanoic acids (PHAs), whose production/degradation cycle reduces undesirable wastes and emissions. we hope that if we applied our system to pathways that have differentes cross linked intermediaries like the biosynthesis of PHA (figure 1), by the FIFO we will optimized the expression of the differentes genes in order to avoid waste producte that will increase impurities. Our strategy consists on replacing the RFP,CFP and YFP genes by the PhaA ,PhaB and PhaC genes in our final system (containing oscillation,FIFO,synchronisation modules).

This strategy is more efficient than a constitutive activation for 3 main reasons:

  • First, in this application the NADPH, which is a cellular metastable fuel, is used by the PhaB to synthesize bioplastic. This molecule is very important for many metabolic pathways in bacteria. A NADPH recuperation step is then needed to ensure other metabolic activities to go on. We can then make the hypothesis that if the PhaB is always activated the bacteria will get exhausted and die quickly. In our system, the bacteria will have a NADPH recuperation step, this is why we hope bacteria will live more than in an usual chemoreactor.
  • Secondly, we hope that our system will increase the purity and the rate of PHA obtain because we don't activate the 3 genes simultaneously, instead of that we activate by a FIFO order system the 3 genes so we will avoid lost of acetoacetylcoA or others important intermediary product in others metabolic pathways.


PHA.jpg

In conclusion,our bacterioclock can be use to obtain many polymers or proteins fibers that their production pass by a lot of methabolic cross linked intermediary, in those situations the FIFO order may optimized the purity and the rate of the final products.

Bibliography