Team:Harvard/Future
From 2008.igem.org
(→Future Directions) |
(→Future Directions) |
||
Line 60: | Line 60: | ||
Our work with creating a system of inducible electrical output in Shewanella has laid the foundations for many different exciting avenues of further inquiry which look to take advantage of a bacteria-computer interface that combines the amazing sensitivity and adaptability of bacteria with the speed and analytical abilities of electricity and computers. | Our work with creating a system of inducible electrical output in Shewanella has laid the foundations for many different exciting avenues of further inquiry which look to take advantage of a bacteria-computer interface that combines the amazing sensitivity and adaptability of bacteria with the speed and analytical abilities of electricity and computers. | ||
- | Using the same principles underlying the lac system, the [http://parts.mit.edu/wiki/index.php/University_of_Edinburgh_2006 | + | Using the same principles underlying the lac system, the [http://parts.mit.edu/wiki/index.php/University_of_Edinburgh_2006 arsenic biosensor] developed by the University of Edinburgh iGEM 2006 team could be introduced into Shewanella, allowing for the coupling of arsenic sensing to an electrical output, a form of a data which is easier to automate and transmit. This could be further extended to other chemical sensing systems, resulting ultimately in an array of different strains Shewanella which all respond to the presence of different chemicals with an electrical output that can be monitored by a computer. This could theoretically allow for the remote sensing and analysis of the chemical composition of an environment over time. |
Revision as of 01:16, 30 October 2008
|