Method & Algorithm : 6
Specific Plasmid Characterisation for 6
We have [FlhDC]real = {coefflhDC} 1([aTc]i)
and [FliA]real = {coeffliA} 2([arab]i)
but we use [aTc]i = Inv_1( [FlhDC] )
and [arab]i = Inv_2( [FliA] )
So, at steady-states,
↓ Table ↑
param
| signification
| unit
| value
| comments
|
(fluorescence)
| value of the observed fluorescence
| au
|
| need for 20 mesures with well choosen values of [aTc]i and for 20 mesures with well choosen values of [arab]i and 5x5 measures for the relation below?
|
conversion
| conversion ratio between fluorescence and concentration ↓ gives ↓
| nM.au-1
| (1/79.429)
|
|
[GFP]
| GFP concentration at steady-state
| nM
|
|
|
γGFP
| dilution-degradation rate of GFP(mut3b) ↓ gives ↓
| min-1
| 0.0198
| Time Cell Division : 35 min.
|
6
| activity of pFlgA with RBS E0032
| nM.min-1
|
|
|
param
| signification corresponding parameters in the equations
| unit
| value
| comments
|
β26
| total transcription rate of FlhDC><pFlgA with RBS E0032 β26
| nM.min-1
|
|
|
(K3/{coeffliA})
| activation constant of FlhDC><pFliL K3
| nM
|
|
|
n3
| complexation order of FlhDC><pFliL n3
| no dimension
|
|
|
β27
| total transcription rate of FliA><pFliL with RBS E0032 β27
| nM.min-1
|
|
|
(K9/{coefflhDC})
| activation constant of FliA><pFliL K9
| nM
|
|
|
n9
| complexation order of FliA><pFliL n9
| no dimension
|
|
|
|
↓ Algorithm ↑
find_P
function optimal_parameters = find_FP(X_data, Y_data, initial_parameters)
function output = act_pProm(parameters, X_data)
for k = 1:length(X_data)
output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3));
end
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),...
initial_parameters, X_data, Y_data, options );
end
|
Then, if we have time, we want to verify the expected relation
<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |
|