Team:Paris/Modeling/first parameters/ODE

From 2008.igem.org

Revision as of 16:10, 1 August 2008 by YannLC (Talk | contribs)

function dx = modele(t,x,alpha,beta)

function dx = modele(t,x,alpha,beta)

% This function defines the ordinary differential equations that provide

% a large scale description of our system.

%

% CALL: [dx] = modele(t, x, alpha, beta)

% t = scalar value, time

% x = vector representing the concentrations of the genes ( 5 genes )

% alpha = parameter of a Hill function, we will change it for robustness

% studies.

% beta = parameter of a Hill function, we will change it for robustness

% studies.

% dx = derivative of the concentrations

%

% This function uses the following formalism dx=x'=f(x)

%

% x(1) : FlhDC

% x(2) : FliA

% x(3) : Z1

% x(4) : Z2

% x(5) : Z3

%% Parameters

n=6;

B=10;

k(1)=10;

k(2)=0.2;

k(3)=beta;

%k(3)=10;

k(5)=n;

p(4)=5;

p(5)=B;

p(6)=n;

p(7)=20;

p(8)=B;

p(9)=n;

p(10)=10;

p(11)=B;

p(12)=n;

p(13)=8;

p(14)=10;

p(15)=n;

%p(16)=20;

p(16)=alpha;

p(17)=B;

p(18)=n;

p(19)=10;

p(20)=B;

p(21)=n;

p(22)=33;

p(23)=0;

p(24)=n;

%% ODE

dx(1)=k(1)*(1-Hill(x(5),k(3),1,k(5)))-k(2)*x(1);

dx(2)=Hill(x(1),p(1),p(2),p(3))+ Hill(x(2),p(22),p(23),p(24))-k(2)*x(2);

dx(3)=Hill(x(1),p(4),p(5),p(6))+ Hill(x(2),p(7),p(8),p(9))-k(2)*x(3);

dx(4)=Hill(x(1),p(10),p(11),p(12))+ Hill(x(2),p(13),p(14),p(15))-k(2)*x(4);

dx(5)=Hill(x(1),p(16),p(17),p(18))+ Hill(x(2),p(19),p(20),p(21))-k(2)*x(5);

dx=dx(:);