Method & Algorithm : 1
Specific Plasmid Characterisation for 3
We have [OmpR*]real = {coefomp}expr(pTet) = {coefomp} 1([aTc]i)
and [FliA]real = {coefFliA}expr(pBad) = {coefFliA} 2([arab]i)
but we use [aTc]i = Inv_1( [OmpR*] )
and [ara]i = Inv_2( [FliA] )
So, at steady-states,
↓ Table ↑
param
| signification
| unit
| value
| comments
|
(fluorescence)
| value of the observed fluorescence
| au
|
| need for 20 values with well choosen [aTc]i
|
conversion
| conversion ration between fluorescence and concentration ↓ gives ↓
| nM.au-1
| (1/79.429)
|
|
[GFP]
| GFP concentration at steady-state
| nM
|
|
|
γGFP
| dilution-degradation rate of GFP(mut3b) ↓ gives ↓
| min-1
| 0.0198
| Only dilution : Time Cell Division : 35 min.
|
1
| activity of pTet with RBS E0032
| nM.min-1
|
|
|
param
| signification corresponding parameters in the equations
| unit
| value
| comments
|
βtet
| basal activity of pTet with RBS E0032 β16
| nM.min-1
|
|
|
(Ktet/{coeftetR})
| activation constant of TetR><pTet K13
| nM
|
| The optimisation program will give us (γ Ktet / {coeftet} 0) The literature [?] gives Ktet =
|
ntet
| complexation order of TetR><pTet n13
| no dimension
|
| The literature [?] gives ntet =
|
KaTc
| complexation constant aTc><TetR K12
| nM
|
| The literature [?] gives KaTc =
|
naTc
| complexation order aTc><TetR n12
| no dimension
|
| The literature [?] gives naTc =
|
|
↓ Algorithm ↑
find_1
function optimal_parameters = find_f1(X_data, Y_data, initial_parameters)
function output = expr_pTet(parameters, X_data)
for k = 1:length(X_data)
output(k) = parameters(1) * (1 - ...
hill((1 - hill(X_data(k),parameters(4),parameters(5))),parameters(2),parameters(3)));
end
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pTet(parameters, X_data), ...
initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options );
end
Inv_1
function quant_aTc = Inv_f1(inducer_quantity)
global gamma, f0;
function equa = F(x)
equa = f1( (f0/gamma) , x ) - inducer_quantity;
end
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
quant_aTc = fsolve(F,1,options);
end
|
Also, this experiment will enable us to know the expression of 1 :
<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |
param
| signification
| unit
| value
| comments
|
[expr(pFlhDC)]
| expression rate of pFlhDC with RBS E0032
| nM.min-1
|
| need for 20 mesures with well choosen values of [aTc]i and for 20 mesures with well choosen values of [arab]i and 5x5 measures for the relation below?
|
γGFP
| dilution-degradation rate of GFP(mut3b)
| min-1
| 0.0198
|
|
[GFP]
| GFP concentration at steady-state
| nM
|
| need for 20 + 20 measures and 5x5 measures for the relation below?
|
(fluorescence)
| value of the observed fluorescence
| au
|
| need for 20 + 20 measures and 5x5 measures for the relation below?
|
conversion
| conversion ratio between fluorescence and concentration
| nM.au-1
| (1/79.429)
|
|
param
| signification corresponding parameters in the equations
| unit
| value
| comments
|
β13
| production rate of FliA-pFlhDC with RBS E0032 β13
| nM.min-1
|
|
|
(K12/{coeffliA})
| activation constant of FliA-pFlhDC K12
| nM
|
|
|
n12
| complexation order of FliA-pFlhDC n12
| no dimension
|
|
|
β2
| production rate of OmpR-pFlhDC with RBS E0032 β2
| nM.min-1
|
|
|
(K22/{coefomp})
| activation constant of OmpR-pFlhDC K22
| nM
|
|
|
n22
| complexation order of OmpR-pFlhDC n22
| no dimension
|
|
|
Then, if we have time, we want to verify the expected relation
|