function dx =
modele(t,x)
% This
function defines the ordinary differential equations that provides
% a large
scale description of our system.
%
% CALL:
[dx] = modele(t, x)
% t =
scalar value, time
% x =
vector representing the concentrations of the genes ( 5 genes )
% dx = derivative of the concentrations
%
% This
function uses the following formalism dx=x'=f(x)
%
% nombre
cellules
global Ncell
global Next
global B
global b
global R
global D
global O
global g
%%
Auxilliary Functions, describing a decreasing step function
%cell1
function xs = f(x)
T(1)=noise(10);
Pa(1)=noise(10);
if x>T(1)
xs=0;
else
xs=Pa(1);
end
end
%%
Ordinary Differential Equations
% calc
intermediate sum
y = 0;
for k=1:Ncell
y = y + (D(2,k))*(x(5+8*(k-1)) - x(Next));
end
x=max(x,0);
for k=1:Ncell
% int
cells
dx(1+8*(k-1)) =
-(g(1+8*(k-1)))*x(1+8*(k-1)) + (B(1,k))*x(8+8*(k-1)) + (b(1,k))*x(1+8*(k-1)) ; %% fliA
dx(2+8*(k-1)) =
-(g(2+8*(k-1)))*x(2+8*(k-1)) + (B(2,k))*x(8+8*(k-1)) + (b(2,k))*x(1+8*(k-1)) ; %% fliL
dx(3+8*(k-1)) =
-(g(3+8*(k-1)))*x(3+8*(k-1)) + (B(3,k))*x(8+8*(k-1)) + (b(3,k))*x(1+8*(k-1)) ; %% flgA
dx(4+8*(k-1)) =
-(g(4+8*(k-1)))*x(4+8*(k-1)) + (B(4,k))*x(8+8*(k-1)) + (b(4,k))*x(1+8*(k-1)) ; %% flhB
dx(5+8*(k-1)) =
-(g(5+8*(k-1)))*x(5+8*(k-1)) + (B(5,k))*x(4+8*(k-1)) - (D(1,k))*(x(5+8*(k-1)) -
x(Next)) ; %% HSL int
dx(6+8*(k-1)) =
-(g(6+8*(k-1)))*x(6+8*(k-1)) + ((R(k))*x(5+8*(k-1)))/(1 + x(5+8*(k-1))) ; %% tetR
mRNA
dx(7+8*(k-1)) =
(O(k))*(x(6+8*(k-1)) - x(7+8*(k-1))) ; %% tetR
dx(8+8*(k-1)) =
- (g(8+8*(k-1)))*x(8+8*(k-1)) + f(x(7+8*(k-1))); %% flhDC
end
%% Outside
of the cells
dx(Next)=
-(g(Next))*x(Next) + y; %% HSL ext
dx=dx(:);
end