Team:Harvard

From 2008.igem.org

(Difference between revisions)
 
(131 intermediate revisions not shown)
Line 3: Line 3:
<style>
<style>
table {
table {
-
   background-color: #ffffff;
+
   background-color: #c4dbea;
-
   font-color: white;
+
   font-color: #cccccc;
   color:white;
   color:white;
}
}
Line 39: Line 39:
</style>
</style>
</head>
</head>
 +
 +
<div style="position: absolute; left: 60px; top: 320px; height: 400px; width: 100px; padding: 1em;">
 +
<img src="https://static.igem.org/mediawiki/igem.org/c/cc/Bactricity.jpg">
 +
</div>
 +
 +
<div style="position: absolute; left: 100px; top: 880px; height: 400px; width: 100px; padding: 1em;">
 +
<img src="https://static.igem.org/mediawiki/2008/0/06/Thanks_border.jpg">
 +
</div>
 +
 +
 +
 +
 +
 +
 +
<div style="position: absolute; left: 85px; top: 950px; height: 400px; width: 400px; padding: 1em;">
 +
<center>
 +
<font style="line-height:170%">
 +
Alain Viel,<br>
 +
Orianna Bretschger,
 +
<br>Daad Saffarini,
 +
<br>Helen White,
 +
<br>Remy Chait,
 +
<br>Natalie Farny,
 +
<br>Christina Agapakis,
 +
<br>Jason Lohmueller,
 +
<br>Kim de Mora,
 +
<br>Colleen Hansel,
 +
<br>Peter Girguis,
 +
<br>Christopher Marx,
 +
<br>George Church,
 +
<br>Jagesh V. Shah,
 +
<br>Pam Silver,
 +
<br>Tamara Brenner,
 +
<br>Harvard BioLabs
 +
</font>
 +
</center>
 +
</div>
 +
 +
 +
 +
 +
 +
<div style="position: absolute; left: 580px; top: 300px; width:300px; padding: 1em;">
 +
<a href="https://2008.igem.org/Team:Harvard/Project">
 +
<img src="https://static.igem.org/mediawiki/2008/d/d3/Bactricitynutshell.jpg"></a>
 +
</div>
 +
<div style="position: absolute; left: 640px; top: 487px; width:180px; padding: .5em;">
 +
<font size=1>Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.</font>
 +
</div>
 +
 +
 +
<div style="position: absolute; left: 480px; top: 700px; padding: 1em;">
 +
<a href="https://2008.igem.org/Team:Harvard/Shewie">
 +
<img src="https://static.igem.org/mediawiki/2008/6/65/Mainshewie.gif"></a>
 +
</div>
 +
<div style="position: absolute; left: 510px; top: 800px; width=200px; padding: 1em;">
 +
<font size=1>
 +
Shewanella oneidensis MR-1 <br>
 +
(fondly referred to as Shewie)<br>
 +
is a metabolically versatile, <br>
 +
and genetically tractable, gram-<br>
 +
negative facultative anaerobe which under <br>
 +
anaerobic conditions reduces a number of electron <br>
 +
acceptors.  This ability can be harnessed by <br>
 +
microbial fuel cells to produce an electric current.
 +
</font>
 +
</div>
 +
<div style="position: absolute; left: 480px; top: 1000px; padding: 1em;">
 +
<a href ="https://2008.igem.org/Team:Harvard/Hardware">
 +
<img src="https://static.igem.org/mediawiki/2008/d/d8/Fuelcellfun.gif">
 +
</a>
 +
</div>
 +
<div style="position: absolute; left: 550px; top: 1190px; width:200px; padding: 1em;">
 +
<font size=1>
 +
The broad goal of our project was to engineer S. Oneidensis to produce a detectable change in electric current in response to some environmental stimulus. In order to observe such a reaction, our first task was to design an environment capable of housing bacteria and measuring current production. The answer? Microbial fuel cells.
 +
</div>
 +
</div>
 +
<div style="position: absolute; left: 100px; top: 800px; padding: 1em;">
 +
<img src="https://static.igem.org/mediawiki/2008/d/da/Igemthanks.jpg">
 +
</div>
 +
</html>
</html>
Line 52: Line 133:
<!--- body here--->
<!--- body here--->
-
{|align="justify" style="background-color:#FFFFFF;text-indent: 15pt;text-align:justify" cellpadding="50" width="90%"
+
{|align="justify" style="background-color:#FFFFFF;text-indent: 15pt; font-color:#cccccc; text-align:justify" cellpadding="50" width="90%"
|
|
-
The 2008 Harvard iGEM project is based on the ability to control and measure the electric current production in Shewanella oneidensis MR-1.  Multiple genes in Shewanella have been identified as playing a role in transferring electrons to solid substrates, thus generating an easily detectible electric current.  Our goal is to be able to detect differences in current output by the activation and/or deactivation of these genes in Shewanella.  To do this, we are using mutant strains of Shewanella which have one or more of these important electron transfer genes knocked out and are reintroducing the genes on an inducible plasmid.  The electric current produced will be detected by a multimeter, and read by a computer, creating a computer-biology interface.
+
<font color=#ffffff>ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss </font>
 +
<br>
 +
[[Image:hspacer.png]]
 +
<br>
 +
 
-
We are developing two inducible systems for electrical current production in Shewanella.  The first is a chemically inducible system, where LacI or TetR repression of the current-production gene expression can be alleviated by the addition of IPTG or anhydrotetracycline, respectively.  Our second approach is a light-inducible system based on the 2005 UT Austin biological camera.  We are also considering a third approach using cI lambda which would be dependent on temperature.
 
-
Using one or both of these systems, we hope to be able to interact with engineered Shewanella in multiple anaerobic microbial fuel cells which we have built. Communication between the fuel cells and a computer then has the potential to be programmable into a game of sorts, such as Tic-Tac-Toe, in which the level of current production induced by a chemical or light input is understood by the computer as a "turn." This rudimentary game is just one of many possibilities for an inducible interaction between computers and bacteria.
 
|}
|}
<br><br>
<br><br>
<!--- end body --->
<!--- end body --->
|}
|}

Latest revision as of 04:38, 30 October 2008

Alain Viel,
Orianna Bretschger,
Daad Saffarini,
Helen White,
Remy Chait,
Natalie Farny,
Christina Agapakis,
Jason Lohmueller,
Kim de Mora,
Colleen Hansel,
Peter Girguis,
Christopher Marx,
George Church,
Jagesh V. Shah,
Pam Silver,
Tamara Brenner,
Harvard BioLabs
Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.
Shewanella oneidensis MR-1
(fondly referred to as Shewie)
is a metabolically versatile,
and genetically tractable, gram-
negative facultative anaerobe which under
anaerobic conditions reduces a number of electron
acceptors. This ability can be harnessed by
microbial fuel cells to produce an electric current.
The broad goal of our project was to engineer S. Oneidensis to produce a detectable change in electric current in response to some environmental stimulus. In order to observe such a reaction, our first task was to design an environment capable of housing bacteria and measuring current production. The answer? Microbial fuel cells.



ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss
Hspacer.png