Team:KULeuven/Model/Reset

From 2008.igem.org

(Difference between revisions)
(Parameters)
m (Parameters)
Line 163: Line 163:
! colspan="4" style="border-bottom: 1px solid #003E81;" | Degradation rates
! colspan="4" style="border-bottom: 1px solid #003E81;" | Degradation rates
|-
|-
-
| d<sub>lactonase</sub>
+
| d<sub>aiiA</sub>
| | d<sub>LVA</sub> = 2.814E-4 s<sup>-1</sup>
| | d<sub>LVA</sub> = 2.814E-4 s<sup>-1</sup>
| LVA-tag reduces lifetime to 40 minutes
| LVA-tag reduces lifetime to 40 minutes
| [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=106306 link]
| [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=106306 link]
|-
|-
-
| d<sub>closed mRNA lactonase</sub>
+
| d<sub>closed mRNA aiiA</sub>
| 0.0046209812 s<sup>-1</sup>
| 0.0046209812 s<sup>-1</sup>
| estimate: because this RNA isn't translated, it degrades faster
| estimate: because this RNA isn't translated, it degrades faster
| [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
| [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
|-
|-
-
| d<sub>open mRNA lactonase</sub>
+
| d<sub>open mRNA aiiA</sub>
| 0.0023104906 s<sup>-1</sup>
| 0.0023104906 s<sup>-1</sup>
|  
|  
| [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
| [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
|-
|-
-
| d<sub>open mRNA lactonase complex</sub>
+
| d<sub>mRNA aiiA complex</sub>
| 0.0023104906 s<sup>-1</sup>
| 0.0023104906 s<sup>-1</sup>
|  
|  

Revision as of 14:06, 28 August 2008

  dock/undock dropdown  

Logo reset.jpg

Contents

Pulse Generator

Position in the system

The Pulse Generator-subsystem is directly linked to the Filter.

When the filter indicates that the input is zero (there is no desease), the system will (ideally) produce no lactonase. As soon as the output of the filter is one, the subsystem will produce a pulse of lactonase which will be high enough to 'remove' all HSL present in the system and in that way reset the timer.

Describing the system

Pulse Generator BioBrick.jpg

ODE's

NOT AVAILABLE

Parameters

Parameter values (Pulse Generator)
Name Value Comments Reference
Degradation rates
dRNA_cI 0.00462 s-1
dcI 7.0E-4 s-1 link
dRNA_Lac 0.00231 s-1
dLac 2.888E-4 s-1
dRNA_Ribokey:cI 0.00231 s-1
Dissociation constants
KRibokey:cI 0.00212 kass/kdiss for the Ribokey cI complex
KcI 0.00337 binding cI on cI-Promotor link
Transcription rates
kRNA_cI 0.025 s-1 maximal transcription rate RNA cI (no cI repressor present)
kRNA_Lac 0.025 s-1
Translation rates
kcI 0.167 s-1
kLac 0.167 s-1 RBS is B0032 (efficiency 0.3) link
Hill cooperativity
ncI 2.0 link

Models

CellDesigner (SBML file)

Pulse Generator

Matlab

Pulse Generator Matlab.jpg

Problem

The idea of a pulsgenerator as reset mechanism doesn't meet the black-box requirements for the following reasons:

  • it takes too long before the proposed system generates a pulse-like event
  • the pulse itself is too long
  • a constant lactonase production sequence generates enough lactonase to reset the timer

Constant Lactonase Production

Pictogram lactonaseproduction.png

Position in the system

The Constant Lactonase Production-system is directly linked to the Filter.

When the filter indicates that the input is zero (there is no desease), the system will (ideally) produce no lactonase. As soon as the output of the filter is one, the system starts producing lactonase and remains doing this untill the light goes off again. In this way all the HSL-molecules that are present will be 'removed' and the timer is reset.

Describing the system

see also: Project:Reset

Modeling Reset.PNG

ODE's

Parameters

Parameter values Constant Lactonase Production
Name Value Comments Reference
Degradation rates
daiiA dLVA = 2.814E-4 s-1 LVA-tag reduces lifetime to 40 minutes link
dclosed mRNA aiiA 0.0046209812 s-1 estimate: because this RNA isn't translated, it degrades faster link
dopen mRNA aiiA 0.0023104906 s-1 link
dmRNA aiiA complex 0.0023104906 s-1 link
T7 Transcription
KT7 421 dissociation constant, recalculated to remove units link
kmax 0.044 s-1 maximal T7 transcription rate link
Key-Lock constants
Keq 1 0,015 [M] between closed and open Lactonase mRNA, experimental link
Keq 2 0.0212 [M] between closed Lactonase mRNA and key unlocked mRNA complex, experimental link
kdis1 100 s-1 derived from experimental values link
kcomplex1 57 s-1 derived from experimental values link
kclosed 100 s-1 derived from experimental values link
kopen 1.5 s-1 derived from experimental values link
ktranslation 0.167 s-1 lock defined translation rate for Lactonase

Models

CellDesigner (SBML file)

LactonaseProduction CellDesigner.png

Matlab (SBML file)

LactonaseProduction Matlab.jpg

Simulation

Remark: up to date with latest version?

The number lactonase genes is held constant during the entire simulation. For the first 15.000 seconds the number of mRNA Ribokey is equal to 0.015 and the number of pT7 molecules to 0.4, then for 15000 s these numbers are set on 6 and 3 respectively (based on the results of the model of the filter) after which they are reduced back to 0.015 and 0.4.
We see that an increase in the number of mRNA Ribokey and pT7(due to an increase in light intensity) will lead to a much higher number of lactonase molecules.

Sim lactonaseproduction 1.png