Team:LCG-UNAM-Mexico/Parameters
From 2008.igem.org
(3 intermediate revisions not shown) | |||
Line 118: | Line 118: | ||
Parameters & kinetics </div></td> | Parameters & kinetics </div></td> | ||
<tr> | <tr> | ||
- | <td valign="top" class="bodyText"><p align="justify"><br> | + | <td valign="top" class="bodyText"><p align="center"><a href="#reactions">Biochemical Reactions</a> | <a href="#initial">Defining the Initial State of the Model </a></p> |
- | The complete model uses 18 kinetic parameters and 11 biochemical reactions. We got 13 of these parameters researching the literature and we estimated the range of values for 2 of them. The remaining 3 we adjusted to the observed results. Reaction kinetics were gotten from the literature, and if no evidence was found then we assumed it to be Law of Mass Action.<br> | + | <p align="justify"><br> |
- | <br> | + | The complete model uses 18 kinetic parameters and 11 biochemical reactions. We got 13 of these parameters researching the literature and we estimated the range of values for 2 of them. The remaining 3 we adjusted to the observed results. Reaction kinetics were gotten from the literature, and if no evidence was found then we assumed it to be Law of Mass Action.<br> |
- | 1. <span class="style4">Degradation of AHL by AiiA</span></p> | + | <br> |
+ | <a name="reactions"></a>1. <span class="style4">Degradation of AHL by AiiA</span></p> | ||
<table width="418" border="0"> | <table width="418" border="0"> | ||
<tr> | <tr> | ||
Line 371: | Line 372: | ||
<tr> | <tr> | ||
<td valign="top"><strong>Parameters:</strong></td> | <td valign="top"><strong>Parameters:</strong></td> | ||
- | <td><p><em>k</em><sub>7</sub> = | + | <td><p><em>k</em><sub>7</sub> = 500 molecules<sup>-1</sup> s<sup>-1</sup> <br> |
<br> | <br> | ||
</p></td> | </p></td> | ||
Line 381: | Line 382: | ||
<tr> | <tr> | ||
<td valign="top"><strong>Notes:</strong></td> | <td valign="top"><strong>Notes:</strong></td> | ||
- | <td><div align="justify">Biologically possible range of values estimated through the model.</div></td> | + | <td><div align="justify"><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation#nickel">Biologically possible range of values estimated through the model.</a></div></td> |
</tr> | </tr> | ||
</table></td> | </table></td> | ||
Line 411: | Line 412: | ||
<tr> | <tr> | ||
<td valign="top"><strong>Notes:</strong></td> | <td valign="top"><strong>Notes:</strong></td> | ||
- | <td><div align="justify">This kinetic parameter wasn’t found in our bibliographic search and <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Notebook/2008- | + | <td><div align="justify">This kinetic parameter wasn’t found in our bibliographic search and <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Notebook/2008-August_2#letter">personal communication with Peter T. Chivers</a> (Washington University School of Medicine) confirmed that this parameter is unknown. The value used is the degradation rate of LacY, the lactose permease of <em>E. coli</em>, which is also a transmembran protein.<sup>11</sup></div></td> |
</tr> | </tr> | ||
</table></td> | </table></td> | ||
Line 431: | Line 432: | ||
<tr> | <tr> | ||
<td valign="top"><strong>Parameters:</strong></td> | <td valign="top"><strong>Parameters:</strong></td> | ||
- | <td><p><em>k</em><sub>9</sub> = | + | <td><p><em>k</em><sub>9</sub> = 500 molecules<sup>-1</sup> s<sup>-1</sup> <br> |
<br> | <br> | ||
</p></td> | </p></td> | ||
Line 441: | Line 442: | ||
<tr> | <tr> | ||
<td valign="top"><strong>Notes:</strong></td> | <td valign="top"><strong>Notes:</strong></td> | ||
- | <td><div align="justify">Biologically possible range of values estimated through the model | + | <td><div align="justify"><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation#nickel">Biologically possible range of values estimated through the model</a>.</div></td> |
</tr> | </tr> | ||
</table></td> | </table></td> | ||
Line 447: | Line 448: | ||
</table> | </table> | ||
<p><strong>NOTE:</strong> The average volume of an <em>E. coli </em>cell is 10<sup>-15</sup> liters.</p> | <p><strong>NOTE:</strong> The average volume of an <em>E. coli </em>cell is 10<sup>-15</sup> liters.</p> | ||
- | <p> | + | <p align="center"><a href="#top"><img src="https://static.igem.org/mediawiki/2008/c/cd/Boton_back.jpg" alt="Back to top" width="190" height="31" border="0"></a></p> |
+ | <p><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | ||
<p class="style2"><a name="initial"></a>Defining the initial state of the system</p> | <p class="style2"><a name="initial"></a>Defining the initial state of the system</p> | ||
<p align="justify"> The initial concentrations of the constitutive proteins (AiiA, LuxR, CI -constitutive synthesis- and CI:CI -due to constitutive synthesis-) were estimated based on the efficiency rate of their promoters, number of promoters per cell, degradation rate of their mRNAs, translation efficiency and degradation rate of the proteins. Initial concentrations of AHL:LuxR complex, the dimer of complexes, CI and CI:CI due to complex activation were set to 0, given these are all due to the action of AHL. Number of copies of both <em>cI</em> and <em>rcnA</em> promoters are 10 based on plasmid copy number. RcnA and Unk were estimated experimentally and set consistent to the observed rate. Concentration of AHL and nickel is determined by us to obtain the desired results. </p> | <p align="justify"> The initial concentrations of the constitutive proteins (AiiA, LuxR, CI -constitutive synthesis- and CI:CI -due to constitutive synthesis-) were estimated based on the efficiency rate of their promoters, number of promoters per cell, degradation rate of their mRNAs, translation efficiency and degradation rate of the proteins. Initial concentrations of AHL:LuxR complex, the dimer of complexes, CI and CI:CI due to complex activation were set to 0, given these are all due to the action of AHL. Number of copies of both <em>cI</em> and <em>rcnA</em> promoters are 10 based on plasmid copy number. RcnA and Unk were estimated experimentally and set consistent to the observed rate. Concentration of AHL and nickel is determined by us to obtain the desired results. </p> | ||
Line 454: | Line 456: | ||
Nickel (total):</span> It’s an arbitrary and adjustable value. Different outcomes can be observed <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation">manipulating this initial value</a>.<br> | Nickel (total):</span> It’s an arbitrary and adjustable value. Different outcomes can be observed <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation">manipulating this initial value</a>.<br> | ||
<span class="style3"><br> | <span class="style3"><br> | ||
- | Unk:</span> Both the Unk concentration and its rate constant are unknown. They are arbitrarily defined in such a way that | + | Unk:</span> Both the Unk concentration and its rate constant are unknown. They are arbitrarily defined in such a way that it is consistent with the <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation#nickel">desired flux.</a><br> |
| | ||
- | <strong>[Unk]</strong>= | + | <strong>[Unk]</strong>= 3,315 molecules<br> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<span class="style3"><br> | <span class="style3"><br> | ||
ρ and ρCI:</span> Their concentration is defined by the copy number of the plasmids that contain them.<br> | ρ and ρCI:</span> Their concentration is defined by the copy number of the plasmids that contain them.<br> | ||
Line 488: | Line 486: | ||
<strong> [LuxR]</strong>= 22000 molecules<br> | <strong> [LuxR]</strong>= 22000 molecules<br> | ||
</p> | </p> | ||
+ | <p align="center"><a href="#top"><img src="https://static.igem.org/mediawiki/2008/c/cd/Boton_back.jpg" alt="Back to top" width="190" height="31" border="0"></a></p> | ||
+ | <p align="justify"><img src="https://static.igem.org/mediawiki/2008/9/99/Ribbon435773498.gif" alt="ribbon" width="579" height="9" /></p> | ||
<p align="justify"> <span class="style2"><strong>References</strong></span><strong><br> | <p align="justify"> <span class="style2"><strong>References</strong></span><strong><br> | ||
</strong><strong>1. </strong>Wang LH <em>et al</em>. (2004) <strong>Specificity and Enzyme Kinetics of the Quorum-quenching <em>N-</em>Acyl Homoserine Lactone Lactonase (AHL-Lactonase). </strong>J Biol Chem <strong>279:</strong>4, 13645-13651. <br> | </strong><strong>1. </strong>Wang LH <em>et al</em>. (2004) <strong>Specificity and Enzyme Kinetics of the Quorum-quenching <em>N-</em>Acyl Homoserine Lactone Lactonase (AHL-Lactonase). </strong>J Biol Chem <strong>279:</strong>4, 13645-13651. <br> | ||
Line 498: | Line 498: | ||
<strong>9. </strong>Andersen JB <em>et al </em> (1998). <strong>New Unstable of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. </strong> Appl Environ Microbiol 64,6: 2240-2246. <br> | <strong>9. </strong>Andersen JB <em>et al </em> (1998). <strong>New Unstable of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. </strong> Appl Environ Microbiol 64,6: 2240-2246. <br> | ||
<strong>10. </strong>Kenneth S.<strong> </strong>Koblan and Gary K. Ackers (1991) <strong>Energetics of Subunit Dimerization in Bacteriophage </strong><strong>λ </strong><strong>cI </strong><strong>Repressor: Linkage to</strong><strong> </strong><strong>Protons, Temperature, and KCl.</strong> Biochemistry 1991, 30, 7817-7821. <br> | <strong>10. </strong>Kenneth S.<strong> </strong>Koblan and Gary K. Ackers (1991) <strong>Energetics of Subunit Dimerization in Bacteriophage </strong><strong>λ </strong><strong>cI </strong><strong>Repressor: Linkage to</strong><strong> </strong><strong>Protons, Temperature, and KCl.</strong> Biochemistry 1991, 30, 7817-7821. <br> | ||
+ | |||
<strong>11. </strong>M. Santillán and M. C. Mackey (2004). <strong>Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.</strong> Biophys J. 86: 1282-1292 <br> | <strong>11. </strong>M. Santillán and M. C. Mackey (2004). <strong>Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.</strong> Biophys J. 86: 1282-1292 <br> | ||
<strong>12. </strong>Malan, T. P., A. Kolb, H. Buc, and W. R. McClure (1984). <strong>Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter.</strong> J. Mol. Biol. 180:881–909. <br> | <strong>12. </strong>Malan, T. P., A. Kolb, H. Buc, and W. R. McClure (1984). <strong>Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter.</strong> J. Mol. Biol. 180:881–909. <br> | ||
<strong>13. </strong>Kennell, D., and H. Riezman (1977). <strong>Transcription and translation initiation frequencies of the <em>Escherichia coli</em> lac operon.</strong> J. Mol. Biol. 114:1–21. <br> | <strong>13. </strong>Kennell, D., and H. Riezman (1977). <strong>Transcription and translation initiation frequencies of the <em>Escherichia coli</em> lac operon.</strong> J. Mol. Biol. 114:1–21. <br> | ||
<strong>14. </strong>Christopher Batten. <strong>Modeling the Lux/AiiA Relaxation Oscillator</strong><strong>.</strong> Unpublished (<a href="http://www.mit.edu/%7Ecbatten/work/ssbc04/modeling-ssbc04.pdf">http://www.mit.edu/~cbatten/work/ssbc04/modeling-ssbc04.pdf</a>). <br> | <strong>14. </strong>Christopher Batten. <strong>Modeling the Lux/AiiA Relaxation Oscillator</strong><strong>.</strong> Unpublished (<a href="http://www.mit.edu/%7Ecbatten/work/ssbc04/modeling-ssbc04.pdf">http://www.mit.edu/~cbatten/work/ssbc04/modeling-ssbc04.pdf</a>). <br> | ||
- | <strong>15. </strong>Bologna Cesena Campus, iGEM 2007 WIKI. (<u><a href=" | + | <strong>15. </strong>Bologna Cesena Campus, iGEM 2007 WIKI. (<u><a href="https://2007.igem.org/Bologna">https://2007.igem.org/Bologna</a></u>) <br> |
<strong>16. </strong>KULeuven team, iGEM 2008 WIKI. Dr. Coli, the bacterial drug delivery system. (<a href="https://2008.igem.org/Team:KULeuven/Model/CellDeath" target="_blank">https://2008.igem.org/Team:KULeuven/Model/CellDeath</a>) </p> | <strong>16. </strong>KULeuven team, iGEM 2008 WIKI. Dr. Coli, the bacterial drug delivery system. (<a href="https://2008.igem.org/Team:KULeuven/Model/CellDeath" target="_blank">https://2008.igem.org/Team:KULeuven/Model/CellDeath</a>) </p> | ||
<p align="justify"><a name="simulation"></a><a href="#top"><img src="https://static.igem.org/mediawiki/2008/c/cd/Boton_back.jpg" alt="Back to top" width="190" height="31" border="0"></a><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Modeling"><img src="https://static.igem.org/mediawiki/2008/5/5b/Model1a.jpg" alt="Modeling the system" width="190" height="31" border="0"></a><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation"><img src="https://static.igem.org/mediawiki/2008/7/7f/Model3.jpg" alt="Simulation&Analysis" width="190" height="31" border="0"></a><br> | <p align="justify"><a name="simulation"></a><a href="#top"><img src="https://static.igem.org/mediawiki/2008/c/cd/Boton_back.jpg" alt="Back to top" width="190" height="31" border="0"></a><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Modeling"><img src="https://static.igem.org/mediawiki/2008/5/5b/Model1a.jpg" alt="Modeling the system" width="190" height="31" border="0"></a><a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Simulation"><img src="https://static.igem.org/mediawiki/2008/7/7f/Model3.jpg" alt="Simulation&Analysis" width="190" height="31" border="0"></a><br> |
Latest revision as of 06:37, 30 October 2008
LCG-UNAM-Mexico | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
iGEM 2008 TEAM | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||