Team:Paris/Modeling/f3bis

From 2008.igem.org

(Difference between revisions)
 
(18 intermediate revisions not shown)
Line 1: Line 1:
-
[[Image:f3env.png|thumb]] (see [[Team:Paris/Modeling/Oscillations#Biochemical_Assumptions|the considerations on the use of EnvZ]])
+
{{Paris/Menu}}
-
We have [EnvZ]<sub>produced</sub> = {coef<sub>env</sub>}''expr(pTet)'' = {coef<sub>env</sub>} &#131;1([aTc]<sub>i</sub>)
+
{{Paris/Header|Method & Algorithm : &#131;3bis}}
 +
<center> = act_''pFlhDC'' </center>
 +
<br>
-
and [EnvZ]<sub>total</sub> = [EnvZ]<sub>basal</sub> + [EnvZ]<sub>produced</sub>
+
[[Image:f6DCA.png|thumb|Specific Plasmid Characterisation for &#131;3bis]]
 +
In this experiment, we have
-
and [FliA] = {coef<sub>FliA</sub>}''expr(pBad)'' = {coef<sub>FliA</sub>} &#131;2([arab]<sub>i</sub>)
+
''' [''EnvZ'']<sub>''real''</sub> = {coef<sub>''envZ''</sub>} &#131;1([aTc]<sub>i</sub>) '''
-
So, if we denote phosphorylated OmpR by ''OmpR<sup>*</sup>'', we have
+
but we use ''' [aTc]<sub>i</sub> = Inv_&#131;1( [''EnvZ''] ) '''
-
[[Image:F3ompfromenv.jpg|center]]
+
so, at steady-states, ''phosphorylated OmpR'' verify :
-
that we can then introduce in the previous expression (&#131; 3) :
+
[[Image:F3b.jpg|center]]
-
[[Image:F3ompfinal.jpg|center]]
+
We can then solve it, and reintroduce the result in the previously characterized ''' &#131;3( 0, [OmpR<sup>*</sup>] ) ''', to determine the parameters :
-
<br><br>
+
<div style="text-align: center">
 +
{{Paris/Toggle|Table of Values|Team:Paris/Modeling/More_f3bis_Table}}
 +
</div>
-
{|border="1" style="text-align: center"
+
<div style="text-align: center">
-
|param
+
{{Paris/Toggle|Algorithm|Team:Paris/Modeling/More_f3bis_Algo}}
-
|signification
+
</div>
-
|unit
+
-
|value
+
-
|-
+
-
|[expr(pFlhDC)]
+
-
|expression rate of <br> pFlhDC '''with RBS E0032'''
+
-
|nM.s<sup>-1</sup>
+
-
|see [[Team:Paris/Modeling/Programs|"findparam"]] <br> need for 20 + 20 measures <br> and 5x5 measures for the ''SUM''?
+
-
|-
+
-
|γ<sub>GFP</sub>
+
-
|dilution-degradation rate <br> of GFP(mut3b)
+
-
|min<sup>-1</sup>
+
-
|0.0198
+
-
|-
+
-
|[GFP]
+
-
|GFP concentration at steady-state
+
-
|nM
+
-
|need for 20 + 20 measures <br> and 5x5 measures for the ''SUM''?
+
-
|-
+
-
|(''fluorescence'')
+
-
|value of the observed fluorescence
+
-
|au
+
-
|need for 20 + 20 measures <br> and 5x5 measures for the ''SUM''?
+
-
|-
+
-
|''conversion''
+
-
|conversion ratio between <br> fluorescence and concentration
+
-
|nM.au<sup>-1</sup>
+
-
|(1/79.429)
+
-
|}
+
-
<br><br>
+
<br>
-
{|border="1" style="text-align: center"
+
<center>
-
|param
+
[[Team:Paris/Modeling/Implementation| <Back - to "Implementation" ]]| <br>
-
|signification <br> corresponding parameters in the [[Team:Paris/Modeling/Oscillations#Resulting_Equations|equations]]
+
[[Team:Paris/Modeling/Protocol_Of_Characterization| <Back - to "Protocol Of Characterization" ]]|
-
|unit
+
</center>
-
|value
+
-
|-
+
-
|β<sub>12bis</sub>
+
-
|production rate of FliA-pFlhDC '''with RBS E0032''' <br> replace β<sub>12</sub> (not written)
+
-
|nM.min<sup>-1</sup>
+
-
|
+
-
|-
+
-
|(K<sub>11bis</sub>/{coef<sub>fliA</sub>})
+
-
|activation constant of FliA-pFlhDC <br> K<sub>11bis</sub>
+
-
|nM
+
-
|
+
-
|-
+
-
|n<sub>11bis</sub>
+
-
|complexation order of FliA-pFlhDC <br> replace n<sub>11</sub> (not written)
+
-
|no dimension
+
-
|
+
-
|-
+
-
|-
+
-
|β<sub>2bis</sub>
+
-
|production rate of EnvZ-pFlhDC '''with RBS E0032''' <br> β<sub>2bis</sub>
+
-
|nM.min<sup>-1</sup>
+
-
|
+
-
|-
+
-
|(K<sub>19bis</sub>/{coef<sub>envZ</sub>})
+
-
|activation constant of EnvZ-pFlhDC <br> replace K<sub>19</sub> (not written)
+
-
|nM
+
-
|
+
-
|-
+
-
|n<sub>19bis</sub>
+
-
|complexation order of EnvZ-pFlhDC <br> n<sub>19bis</sub>
+
-
|no dimension
+
-
|
+
-
|}
+
-
 
+
-
<br><br>
+
-
 
+
-
Then, if we have time, we want to verify the expected relation
+
-
 
+
-
[[Image:SumpFlhDC2.jpg|center]]
+

Latest revision as of 02:16, 30 October 2008

Method & Algorithm : ƒ3bis


= act_pFlhDC


Specific Plasmid Characterisation for ƒ3bis

In this experiment, we have

[EnvZ]real = {coefenvZ} ƒ1([aTc]i)

but we use [aTc]i = Inv_ƒ1( [EnvZ] )

so, at steady-states, phosphorylated OmpR verify :

F3b.jpg

We can then solve it, and reintroduce the result in the previously characterized ƒ3( 0, [OmpR*] ) , to determine the parameters :

↓ Table of Values ↑
↓ Algorithm ↑


function optimal_parameters = find_f3_EnvZ(X_data, Y_data, initial_parameters)
% gives the 'best parameters' involved in f3 with OmpR = 0 by least-square optimisation
% -> USE IT AFTER find_f3_OmpR
 
% X_data = vector of given values of ( [EnvZ]i ) (experimentally
% controled)
% Y_data = vector of experimentally measured values f3 corresponding of
% the X_data
% initial_parameters = values of the parameters proposed by the literature
%                       or simply guessed
%                    = [EnvZ_b, OmpR_b, K14, n14]
 
global beta17 K15 n15; % parameters GIVEN BY find_f3_OmpR
 
     function output = act_pFlhDC(parameters, X_data)
         for k = 1:length(X_data)
             OmpR_P = complexes((parameters(1) + X_data(k)),parameters(2),parameters(3),parameters(4));
                 % complexes is a function that solve the "basical
                 % complexation equation"
             output(k) = beta17*(1 - hill( OmpR_P, K15, n15 ));
         end
     end
 
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
% options for the function lsqcurvefit
 
optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pFlhDC(parameters, X_data), ...
     initial_parameters, X_data, Y_data, options );
% search for the fittest parameters, between 1/10 and 10 times the initial
% parameters
 
end


<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |