Team:Minnesota/Team
From 2008.igem.org
(5 intermediate revisions not shown) | |||
Line 8: | Line 8: | ||
'''Team Comparator''' | '''Team Comparator''' | ||
|- | |- | ||
- | |Control systems are an integral component of almost all aspects of life. Whether it is in industrial, biological, or chemical applications, controllers provide a way to keep systems functioning properly. A vital part of any control system is the comparator. This component compares a set point value and a measured value, and determines which is larger. It then sends the appropriate signal to the | + | |Control systems are an integral component of almost all aspects of life. Whether it is in industrial, biological, or chemical applications, controllers provide a way to keep systems functioning properly. A vital part of any control system is the comparator. This component compares a set point value and a measured value, and determines which is larger. It then sends the appropriate signal to the controller, which reacts to bring the system back to the set point. In typical applications, the controller equipment is electronic. However, our team set out to create a comparator using only genetic components. This comparator could potentially be used as part of a new, solely biological control system that could be used to treat many diseases afflicting humans, for example diabetes. This comparator could compare the blood sugar of a patient to what it should be, and send this result to a control system that could compensate, for example by changing the levels of insulin. |
- | In order to undertake this task, a system involving six genes was designed. For our system, the two inputs (one representing the set point and one representing the measured value) are IPTG and ATC. These inputs will activate the transcription of the LacI and TetR proteins, and set in motion the rest of the system to produce the outputs. Depending on the amounts of the two inducer molecules added to the system, either green fluorescent protein(GFP) or red fluorescent protein(RFP) will be produced. The actual design of the system can be seen below. In order to complete this project, a total of six genes will have to be cloned into plasmids, and two new BioBrick parts will be produced. One will be a TetR and p22 | + | In order to undertake this task, a system involving six genes was designed. For our system, the two inputs (one representing the set point and one representing the measured value) are IPTG and ATC. These inputs will activate the transcription of the LacI and TetR proteins, and set in motion the rest of the system to produce the outputs. Depending on the amounts of the two inducer molecules added to the system, either green fluorescent protein (GFP) or red fluorescent protein(RFP) will be produced. The actual design of the system can be seen below. In order to complete this project, a total of six genes will have to be cloned into plasmids, and two new BioBrick parts will be produced. One will be a TetR and p22-MNT dual-repressed promoter, and the other will be a LacI and lambdaphage cI dual-repressed promoter. We will also build mathematical models and conduct computer simulations that will help with the designs. This project will pave the way for other parts of a true genetic PID controller to be produced, which could be an exciting scientific development in the near future. |
Line 31: | Line 31: | ||
!align="center"|[[Team:Minnesota/Notebook|Notebook]] | !align="center"|[[Team:Minnesota/Notebook|Notebook]] | ||
|} | |} | ||
- | |||
Line 41: | Line 40: | ||
*''' Yiannis Kaznessis''': Head honcho | *''' Yiannis Kaznessis''': Head honcho | ||
*'''Katherine Volzing''': Our babysitter | *'''Katherine Volzing''': Our babysitter | ||
- | *'''John Barrett''': | + | *'''John Barrett''': Lindy Snob |
- | *''' | + | *'''Jon Tomshine''': Our model expert |
*'''Vassilis Sotiropoulos''': Our Greek model expert | *'''Vassilis Sotiropoulos''': Our Greek model expert | ||
*'''Tony Hill''': Our post-doc model expert | *'''Tony Hill''': Our post-doc model expert | ||
Line 48: | Line 47: | ||
|'''Undergrads:''' | |'''Undergrads:''' | ||
- | *'''Ellen Martin''': Do you want to be UNCOMFORTABLY ENERGETIC? | + | *'''Sarah Hendrickson''': Let's do it to it! |
- | + | *'''Ellen Martin''': Do you want to be UNCOMFORTABLY ENERGETIC!?! | |
*'''Ben Swiniarski''': Likes long walks on the beach, getting caught in the rain | *'''Ben Swiniarski''': Likes long walks on the beach, getting caught in the rain | ||
*'''Jeremy Riesberg''': Prefers sunshine | *'''Jeremy Riesberg''': Prefers sunshine | ||
Line 69: | Line 68: | ||
Image:KristenMN.jpg|Kristen Lindblad | Image:KristenMN.jpg|Kristen Lindblad | ||
Image:tonyMN.jpg|Tony Hill | Image:tonyMN.jpg|Tony Hill | ||
+ | Image:vassilisMN.jpg|Vassilis Sotiropoulos | ||
+ | Image:JonMN.jpg|Jon Tomshine | ||
</gallery> | </gallery> | ||
Line 80: | Line 81: | ||
Image:South_Park_Kristen.jpg|Kristen Lindblad | Image:South_Park_Kristen.jpg|Kristen Lindblad | ||
Image:South_Park_Tony.jpg|Tony Hill | Image:South_Park_Tony.jpg|Tony Hill | ||
+ | Image:South_Park_Vassili.jpg|Vassilis Sotiropoulos | ||
+ | Image:South_Park_Jon.jpg|Jon Tomshine | ||
</gallery> | </gallery> | ||
Latest revision as of 01:23, 28 June 2008
The Minnesota iGEM '08 team consists of groups working on two different projects. One team is located primarily in Minneapolis and is designing a comparator for their project. The other team is based in St. Paul and is working on a time bomb. | |
| |
Control systems are an integral component of almost all aspects of life. Whether it is in industrial, biological, or chemical applications, controllers provide a way to keep systems functioning properly. A vital part of any control system is the comparator. This component compares a set point value and a measured value, and determines which is larger. It then sends the appropriate signal to the controller, which reacts to bring the system back to the set point. In typical applications, the controller equipment is electronic. However, our team set out to create a comparator using only genetic components. This comparator could potentially be used as part of a new, solely biological control system that could be used to treat many diseases afflicting humans, for example diabetes. This comparator could compare the blood sugar of a patient to what it should be, and send this result to a control system that could compensate, for example by changing the levels of insulin.
In order to undertake this task, a system involving six genes was designed. For our system, the two inputs (one representing the set point and one representing the measured value) are IPTG and ATC. These inputs will activate the transcription of the LacI and TetR proteins, and set in motion the rest of the system to produce the outputs. Depending on the amounts of the two inducer molecules added to the system, either green fluorescent protein (GFP) or red fluorescent protein(RFP) will be produced. The actual design of the system can be seen below. In order to complete this project, a total of six genes will have to be cloned into plasmids, and two new BioBrick parts will be produced. One will be a TetR and p22-MNT dual-repressed promoter, and the other will be a LacI and lambdaphage cI dual-repressed promoter. We will also build mathematical models and conduct computer simulations that will help with the designs. This project will pave the way for other parts of a true genetic PID controller to be produced, which could be an exciting scientific development in the near future.
| |
Home | The Team | The Project | Parts Submitted to the Registry | Modeling | Notebook |
---|
Contents |
Who we are: Team Comparator
Advisors:
| Undergrads:
|
Team Pictures
YiannisMN.jpg
Yiannis Kaznessis |
|||
Who we are: Team Time Bomb
What we did
(Provide proper attribution for all work)
Where we're from
Ben Swiniarski: Papillion, Nebraska |
Sarah Hendrickson: Lafayette, Colorado |
Kristen Lindblad: Cottage Grove, Minnesota |
Ellen Martin: Milford, Michigan |
Jeremy Riesberg: Papillion, Nebraska |