Team:Bologna
From 2008.igem.org
Line 32: | Line 32: | ||
|titolo=[[Team:Bologna/Project|PROJECT]] | |titolo=[[Team:Bologna/Project|PROJECT]] | ||
|contenuto=[[Image:Nome_Progetto2.png|550px|left|Nome Progetto]] | |contenuto=[[Image:Nome_Progetto2.png|550px|left|Nome Progetto]] | ||
- | The project aims to design a bacterial reprogrammable memory with genetically engineered E.coli colonies in solid medium working as an array of binary memory cells. To engineer bacteria we designed a genetic flip-flop (SR Latch) composed of a binary memory and an UV sensitive trigger. We chose UV to have a fine spatial selectivity in programming the cells and IPTG to reset the memory. We designed | + | The project aims to design a bacterial reprogrammable memory with genetically engineered E.coli colonies in solid medium working as an array of binary memory cells. To engineer bacteria we designed a genetic flip-flop (SR Latch) composed of a binary memory and an UV sensitive trigger. We chose UV to have a fine spatial selectivity in programming the cells and IPTG to reset all the memory cells. We designed the circuit by model-based analysis. Core elements of the genetic memory are two mutually regulated promoters. Each promoter has as an operator site flanking a constitutive promoter. Thus, promoter transcriptional strength and repressor binding affinity can be independently fixed. Operators for LacI, TetR, Lambda and LexA repressors were cloned as BioBricks to allow the rational design of regulated promoters that is still lacking in the Registry. A simple procedure was established to characterize the regulated promoter. We expect these parts to be a benefit in many Synthetic Biology applications. [[Team:Bologna/Project|Click here for more information...]] |
<br><br><br><br> | <br><br><br><br> | ||
}} | }} |
Revision as of 17:59, 26 October 2008
HOME | PROJECT | TEAM | SOFTWARE | MODELING | WET LAB | SUBMITTED PARTS | BIOSAFETY AND PROTOCOLS |
---|
The project aims to design a bacterial reprogrammable memory with genetically engineered E.coli colonies in solid medium working as an array of binary memory cells. To engineer bacteria we designed a genetic flip-flop (SR Latch) composed of a binary memory and an UV sensitive trigger. We chose UV to have a fine spatial selectivity in programming the cells and IPTG to reset all the memory cells. We designed the circuit by model-based analysis. Core elements of the genetic memory are two mutually regulated promoters. Each promoter has as an operator site flanking a constitutive promoter. Thus, promoter transcriptional strength and repressor binding affinity can be independently fixed. Operators for LacI, TetR, Lambda and LexA repressors were cloned as BioBricks to allow the rational design of regulated promoters that is still lacking in the Registry. A simple procedure was established to characterize the regulated promoter. We expect these parts to be a benefit in many Synthetic Biology applications. Click here for more information...
The rationale underpinning the fundations of the Ecoli.PROM team consists in the synergistical collaboration of a number of various young experts in precise areas of science. Such elements will feed into the group the expertise and know-how in Biotechnology, Electronic and Biomedical engineering with the additional support of pharmacists and models experts.
The innovation will indeed lie in this compound effort, directed towards the driving of synthetic biology to implement a system working as a result of complex biological activity, rather than conventional electronic elaboration. Click here for more information...
Aknowledgements
Our Team is funded by:
- [http://www.unibo.it/Portale/default.htm University of Bologna]
- [http://serinar.criad.unibo.it Ser.In.Ar. Cesena]