Team:UC Berkeley/GatewayOverview
From 2008.igem.org
(→Gateway Overview) |
(→Gateway Overview) |
||
Line 5: | Line 5: | ||
The first step of the layered assembly scheme involves the transfer of biobrick parts from an entry vector to a double antibiotic assembly vector. Traditionally, this would require a fairly work-intensive protocol requiring digestion, gel purification, ligation, transformation, and plasmid isolation. In addition to being more time-consuming, the aforementioned procedure is also suboptimal because it is difficult to scale-up. | The first step of the layered assembly scheme involves the transfer of biobrick parts from an entry vector to a double antibiotic assembly vector. Traditionally, this would require a fairly work-intensive protocol requiring digestion, gel purification, ligation, transformation, and plasmid isolation. In addition to being more time-consuming, the aforementioned procedure is also suboptimal because it is difficult to scale-up. | ||
- | The [Gateway cloning] approach developed by Invitrogen | + | The [[Gateway cloning]] approach developed by Invitrogen |
The reactions required to perform each step of layered assembly can be outsourced to engineered E. coli. For example, to move a Biobrick part from an entry vector to an assembly vector usually requires digestion with the appropiate enzymes, gel purifying the correct fragment, then ligating the part with the assembly vector backbone. Using an E.coli with our Gateway device, this is reduced to just transforming the entry vector with the Biobrick part, lysing with the self-lysis device, and then using the lysate in a transformation. A protocol that cannot be easily automated is thus reduced to a series of liquid transfers and heating/cooling steps. | The reactions required to perform each step of layered assembly can be outsourced to engineered E. coli. For example, to move a Biobrick part from an entry vector to an assembly vector usually requires digestion with the appropiate enzymes, gel purifying the correct fragment, then ligating the part with the assembly vector backbone. Using an E.coli with our Gateway device, this is reduced to just transforming the entry vector with the Biobrick part, lysing with the self-lysis device, and then using the lysate in a transformation. A protocol that cannot be easily automated is thus reduced to a series of liquid transfers and heating/cooling steps. |
Revision as of 09:37, 27 October 2008
Gateway Overview
The first step of the layered assembly scheme involves the transfer of biobrick parts from an entry vector to a double antibiotic assembly vector. Traditionally, this would require a fairly work-intensive protocol requiring digestion, gel purification, ligation, transformation, and plasmid isolation. In addition to being more time-consuming, the aforementioned procedure is also suboptimal because it is difficult to scale-up.
The Gateway cloning approach developed by Invitrogen
The reactions required to perform each step of layered assembly can be outsourced to engineered E. coli. For example, to move a Biobrick part from an entry vector to an assembly vector usually requires digestion with the appropiate enzymes, gel purifying the correct fragment, then ligating the part with the assembly vector backbone. Using an E.coli with our Gateway device, this is reduced to just transforming the entry vector with the Biobrick part, lysing with the self-lysis device, and then using the lysate in a transformation. A protocol that cannot be easily automated is thus reduced to a series of liquid transfers and heating/cooling steps.