Team:Bologna/Modeling

From 2008.igem.org

(Difference between revisions)
(JK Flip-Flop)
(JK Flip-Flop)
Line 174: Line 174:
A flip-flop is usually controlled by one or two control signals and/or a gate or clock signal. The output often includes the complement as well as the normal output. As flip-flops are implemented electronically, they require power and ground connections.
A flip-flop is usually controlled by one or two control signals and/or a gate or clock signal. The output often includes the complement as well as the normal output. As flip-flops are implemented electronically, they require power and ground connections.
 +
Flip-flops can be either simple (transparent) or clocked. Simple flip-flops can be built around a pair of cross-coupled inverting elements: vacuum tubes, bipolar transistors, field effect transistors, inverters, and inverting logic gates have all been used in practical circuits — perhaps augmented by some gating mechanism (an enable/disable input). The more advanced clocked (or non-transparent) devices are specially designed for synchronous (time-discrete) systems; such devices therefore ignores its inputs except at the transition of a dedicated clock signal (known as clocking, pulsing, or strobing). This causes the flip-flop to either change or retain its output signal based upon the values of the input signals at the transition. Some flip-flops change output on the rising edge of the clock, others on the falling edge.
 +
 +
Clocked flip-flops are typically implemented as master-slave devices[3] where two basic flip-flops (plus some additional logic) collaborate to make it insensitive to spikes and noise between the short clock transitions; they nevertheless also often include asynchronous clear or set inputs which may be used to change the current output independent of the clock.
 +
 +
Flip-flops can be further divided into types that have found common applicability in both asynchronous and clocked sequential systems: the SR ("set-reset"), D ("data" or "delay"[4]), T ("toggle"), and JK types are the common ones; all of which may be synthesized from (most) other types by a few logic gates. The behavior of a particular type can be described by what is termed the characteristic equation, which derives the "next" (i.e., after the next clock pulse) output, Qnext, in terms of the input signal(s) and/or the current output, Q.
[https://2008.igem.org/Team:Bologna/Project ''Up'']
[https://2008.igem.org/Team:Bologna/Project ''Up'']

Revision as of 09:14, 29 October 2008

Logo1a.gifTestata dx.jpg
HOME PROJECT TEAM SOFTWARE MODELING WET LAB LAB-BOOK SUBMITTED PARTS BIOSAFETY AND PROTOCOLS


Contents

Model-based analysis of the genetic Flip-Flop

The genetic Flip-Flop

Figure 1: Scheme of the genetic Flip-Flop

The molecular circuit in Figure 1 can switch between two different stable states (LacI-ON and TetR-ON), driven by two external stimuli (UVc and IPTG). LacI-ON represents the stable state where the LacI gene is active and LacI protein represses TetR gene expression, in a positive feedback. Therefore, the LacI-ON state coincides with the TetR-OFF condition. On the contrary, the TetR-ON represents the state with the TetR gene active and the LacI gene silenced (LacI-OFF). Owing to the coexistence of two stable states (bistability), this circuit is capable of serving as a binary of memory. We denominated it a Flip-Flop since it works as a SR Latch: LacI state is the Q.jpg output and TetR state is the Qneg.jpg output. Uvc is the set signal and IPTG is the reset signal. Indeed, IPTG stimulation inhibits LacI repressor, thus can cause the transition from the LacI-ON state to the TetR-ON. UVc radiation, inactivating LexA repressor through the SOS response (Friedberg et al., 1995) can cause the opposite transition from LacI-ON to TetR-ON.




Mathematical Model


Model equations


The Flip-Flop circuit in Figure 1 can be modeled by the following equations:

Equazioni.jpg


Symbol definition is listed in Table 1.

Tabella simboli.jpg


A common motif in repressor proteins is the presence of a dimeric nucleotide-binding site with dimeric structure. In accordance to this general structure the cooperativity coefficients Mu.jpg were assumed equal to 2. The maximum velocity of repressor synthesis Alfa.jpg accounts for the strength of the unregulated promoter and RBS. The value of the affinity constant for the binding of repressor to the promoter strictly depends on the sequence of operator site (OS block).

Adimensional equations


The equations (1.1) and (1.2) can be written dimensionless:


Sistemaequazioni.jpg

Where:

Accozz.jpg


Up

Equibrium conditions


In the absence of stimuli, the adimensional concentrations of LacI (I.jpg) and TetR (R.jpg) at equilibrium are related by the equations:

Equa3new.jpg


To obtain these relations the UVc-dependent term in equation (1.4) was ignored (Appr.jpg ). This is justified by the high binding constant of LexA for its operator, and the consequent negligible contribution to the LacI synthesis. Equations (1.6) and (1.7) can have one or three solutions that represent the equilibrium conditions of the circuit. The solutions, i.e. the equilibrium conditions, can be graphically identified as the intersections between R.jpg and I.jpg nullclines (see Figure 2). The case of multiple equilibrium conditions (bistability case) is shown in Figure 2 panel b. TetR-ON and LacI-ON are stable equilibriums separated by the unstable one (saddle point). Due to the bistability the circuit can operate as a binary memory. The existence of a bistability condition depends on the value of Kr.jpg and Ki.jpg parameters. If Kr.jpg decrease (see Figure 2 pannel a) a saddle-node bifurcation can occur, TetR-ON equilibrium vanishes and remain only the stable equilibrium LacI-ON. The contrary occurs when Ki.jpg is decreased (Figure 2 pannel c). Thus bistability is guaranteed only for a limited range of Ki.jpg and Kr.jpg values.

Figure 2: Equilibrium conditions


Bifurcation analysis


Assuming that LacI-ON exists the corresponding equilibrium value of I.jpg is higher than 1 (see Figure 2), then it can be assumed that Iquadro.jpg and the equation (1.7) simplies to:

Equa1 8b.jpg


Substituting this expression in equation (1.6) one obtain:

Equa1 9b.jpg

Then:

Equa1 10b.jpg


To be real the solutions of equation (1.10) it is necessary that Krdis.jpg (see Figure 3). Under this condition the existence of the LacI-ON state is assured. When Kreq.jpg the system undergoes a saddle-node bifurcation (LacI-ON and saddle point go in collision) and the two equilibrium points vanish.

Figure 3: Saddle-Node bifurcation


An analogous result can be obtained for the existence of the TetR-ON state. Thus, a sufficient condition for bistability is:

Equa1 11 12.jpg


Figure 4 shows the log-log plot of (1.11) and (1.12)

Figure 4: Range of bistability for the genetic Flip-Flop


Up

Procedure for Ki-index identification


The procedure will be described for LacI, analogous procedure can be applied to the TetR case. The value of Ki.jpg -index can be identified comparing the experimental responses of the open loop and closed loop circuits:

Figure 5: Molecular circuits for the Ki-index experimental determination


  • Open loop circuit







  • Closed loop circuit








The LacI concentration in the open loop circuit is given by:

Equa1 13.jpg


Thus the equilibrium condition is:

Equa1 14.jpg


The time derivative of LacI concentration in the close loop circuit follows:

Equa1 15.jpg


Which gives the equilibrium condition:

Equa1 16.jpg


That can be rewritten

Equa1 17.jpg


The affinity coefficient can consequently be derived from this expression

Equa1 18.jpg


Inserting the (1.14) and (1.18) in the Ki.jpg-index definition one obtain:

Equa1 19b.jpg


We assume that GFP is proportion to Imai.jpg, then

Equa1 20.jpg


We introduce the ratio H.jpg between the fluorescence in open loop and in closed loop:

Equa1 21.jpg


After measuring the ratio H.jpg it is possible to calculate Ki.jpg by the curve in Figure 6 and then it is possible to establish by Figure 4 the Kr.jpg range that guarantees bistability. In the presence of an experimentally characterized library of regulated promoter, the procedure can be adopted to design genetic Flip-Flop with desired behaviors.

Figure 6: Ki-index for LacI

Numerical simulation

Figure 7: State-Plane Trajectories
Figure 8: Circuit response to IPTG pulse
Figure 9: Circuit response to UVc radiation

JK Flip-Flop

Figure 10: JK Flip-Flop

In digital circuits, a flip-flop is a term referring to an electronic circuit (a bistable multivibrator) that has two stable states and thereby is capable of serving as one bit of memory. Today, the term flip-flop has come to mostly denote non-transparent (clocked or edge-triggered) devices, while the simpler transparent ones are often referred to as latches; however, as this distinction is quite new, the two words are sometimes used interchangeably (see history).

A flip-flop is usually controlled by one or two control signals and/or a gate or clock signal. The output often includes the complement as well as the normal output. As flip-flops are implemented electronically, they require power and ground connections.

Flip-flops can be either simple (transparent) or clocked. Simple flip-flops can be built around a pair of cross-coupled inverting elements: vacuum tubes, bipolar transistors, field effect transistors, inverters, and inverting logic gates have all been used in practical circuits — perhaps augmented by some gating mechanism (an enable/disable input). The more advanced clocked (or non-transparent) devices are specially designed for synchronous (time-discrete) systems; such devices therefore ignores its inputs except at the transition of a dedicated clock signal (known as clocking, pulsing, or strobing). This causes the flip-flop to either change or retain its output signal based upon the values of the input signals at the transition. Some flip-flops change output on the rising edge of the clock, others on the falling edge.

Clocked flip-flops are typically implemented as master-slave devices[3] where two basic flip-flops (plus some additional logic) collaborate to make it insensitive to spikes and noise between the short clock transitions; they nevertheless also often include asynchronous clear or set inputs which may be used to change the current output independent of the clock.

Flip-flops can be further divided into types that have found common applicability in both asynchronous and clocked sequential systems: the SR ("set-reset"), D ("data" or "delay"[4]), T ("toggle"), and JK types are the common ones; all of which may be synthesized from (most) other types by a few logic gates. The behavior of a particular type can be described by what is termed the characteristic equation, which derives the "next" (i.e., after the next clock pulse) output, Qnext, in terms of the input signal(s) and/or the current output, Q.

Up

Bibliography

Up