|
|
Line 255: |
Line 255: |
| <h2><a name="top" id="top"></a>CONTENTS:</h2> | | <h2><a name="top" id="top"></a>CONTENTS:</h2> |
| <ul class="style24"> | | <ul class="style24"> |
- | <li><a href="#1"><u>Cell Movement in Microscopic and Macroscopic Aspects</u></a></li> | + | <li><a href="#1">Cell Movement in Microscopic and Macroscopic Aspects</a></li> |
- | <li><a href="#2"><u>Front propagation for Cell Growth</u> </a></li> | + | <li><a href="#2">Front propagation for Cell Growth </a></li> |
- | <li><a href="#3"><u>Density Dependent Motility</u></a></li> | + | <li><a href="#3">Density Dependent Motility</a></li> |
- | <li><a href="#4"><u>Full Model of Density Dependent Motility</u></a></li> | + | <li><a href="#4">Full Model of Density Dependent Motility</a></li> |
- | <li><a href="#5"><u>Modeling Results</u></a></li> | + | <li><a href="#5">Modeling Results</a></li> |
| </ul> | | </ul> |
| <p> </p> | | <p> </p> |
Line 315: |
Line 315: |
| </object> | | </object> |
| | | |
- | </p> </td> | + | </p> |
- | <td><div align="center">
| + | |
- | <script type="text/javascript">
| + | |
- | AC_FL_RunContent( 'codebase','http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,28,0','width','250','height','250','title','fish3d','src','https://static.igem.org/mediawiki/2008/2/22/1026forfish3D','quality','high','pluginspage','http://www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash','movie','https://static.igem.org/mediawiki/2008/2/22/1026forfish3D' ); //end AC code
| + | |
- | </script><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,28,0" width="250" height="250" title="fish3d">
| + | |
- | <param name="movie" value="https://static.igem.org/mediawiki/2008/2/22/1026forfish3D.swf">
| + | |
- | <param name="quality" value="high">
| + | |
- | <embed src="https://static.igem.org/mediawiki/2008/2/22/1026forfish3D.swf" quality="high" pluginspage="http://www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash" type="application/x-shockwave-flash" width="250" height="250"></embed>
| + | |
- | </object>
| + | |
- | </div></td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | <div align="center"> <span class="style27">Fig. 2</span> The movie of the wild type pattern obtained by model in 2D(left) and 3D(right)</div>
| + | |
- | <a href="https://2008.igem.org/Team:iHKU/result#31">(Click here to see the movie obtained by experiments
| + | |
- | ) </a>
| + | |
- | <p><a href="#top">[Back to Top]</a></p>
| + | |
- | <p> </p>
| + | |
- | <p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p>
| + | |
- | <h3 class="style3"><strong><a name="3" id="3"></a><span class="style7">Density Dependent Motility</span></strong></h3>
| + | |
- | <p align="center"><img src="/wiki/images/0/0a/Modelling_pic7.JPG" alt="" width="265" height="114" /></p>
| + | |
- | <div align="center"><span class="style27">Fig. 3</span> Designed genetic circuit</div>
| + | |
- | <p class="style26">In experiments, we designed a circuit that the cell motility was repressed by cell density <em>ρ</em>. When the cell density <em>ρ</em> was high, the diffusion coefficient <em>D</em> became small. Therefore, the fisher’s equation as equation (2.1) was not valid in this case any more. </p>
| + | |
- | <p class="style26">In order to be simple, we firstly considered the one dimension problem again. We assumed the cell density at point <em>x</em> was <em>ρ</em>(x) at time <em>t</em>. In a very short time <em>τ</em>, there would be two groups of<em> cell </em>at <em>x</em> moving into its nearby points <em>x</em>-<em>δ</em>, <em>x</em>+<em>δ,</em> due to the random walk. And the amount of cell in each group were proportional to the product of <em>D</em>(<em>ρ</em>(<em>x</em>)) and <em>ρ</em>(<em>x</em>). Therefore,</p>
| + | |
- | <img src="/wiki/images/9/91/ModelEq8.gif" width="500" height="97">(3.1)
| + | |
- | <p>In the limit <em>τ</em>-->0 and<em> δ</em>-->0, we obtain</p>
| + | |
- | <img src="/wiki/images/d/df/ModelEq9.gif" width="500" height="69">(3.2)
| + | |
- | <p class="style26">And the function <em>D</em><em>ρ</em>(<em>ρ</em>) was a decrease function. For a simplest case, we considered a Heaviside Function</p> <p align="center" class="style26"><img src="/wiki/images/c/c3/Modelnew1.png" width="254" height="217" /></p>
| + | |
- | <div align="center" class="style27"></div>
| + | |
- | <p class="style26">The numerical simulations gave us the results shown in Fig.5. The cell density showed a periodical-narrow-peak structure. These peaks were what we wanted, as they produced some regions of low cell density, though the whole pattern was not quite similar with that of experiments. And the exact pattern would come out when we took account of the other parts in the whole genetic circuit(See <a href="#4">Full Model</a>).</p>
| + | |
- | <p><img src="/wiki/images/d/dc/Modelnew2.png" width="561" height="272" /></p>
| + | |
- | <div align="center" class="style27"> Fig. 5 Periodical-narrow-peak pattern in 2D(left); the cell density distribution along the radius(right) </div>
| + | |
- | <p><a href="#top">[Back to Top]</a></p>
| + | |
- | <p> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p>
| + | |
- | <h3><a name="4" id="4"></a><span class="style7">Full Model of Density Dependent Motility</span></h3>
| + | |
- | <div align="center">
| + | |
- | <p><img src="/wiki/images/0/01/Modelling_pic10.png" width="386" height="242" /></p>
| + | |
- | <span class="style27">Fig. 6</span> The entire designed genetic circuit </div>
| + | |
- | <p>Actually, in our genetic circuit, we transformed a plasmid which can secrete AHL to environment (Fig.6). When the AHL density <em>h</em> of environment was high, the AHL came into the cell. Then AHL combining with <em>LuxR</em> repressed the expression level of <em>cheZ</em> which controled the motility of <em>E.coli.</em> So it was necessary to take account of the AHL effect. </p>
| + | |
- | <p>First, the AHL was synthesized by the <em>E.coli</em> cell at the rate <em>λ</em>. And the degradation rate<em> β</em> of AHL whose half life is normally about 15 to 30 minutes. Considering the diffusion of AHL, we obtained </p>
| + | |
- | <img src="/wiki/images/e/ee/HkumodelEq5.gif" width="500" height="69">(4.1)
| + | |
- | <p>where <em>Dh</em> is the diffusion coefficient of AHL, which is about 0.001mm2/min[6].<br>
| + | |
- | And the cell diffusion coefficient of <em>E.coli</em> is determined by the density of AHL. Therefore </p>
| + | |
- | <img src="/wiki/images/6/60/ModelEq6.gif" width="500" height="69">(4.2)
| + | |
- | <p>where <em>D</em><em>ρ</em>(<em>h</em>) is a decreasing function of <em>h</em>.</p>
| + | |
- | <p>Furthermore, the nutrient consumption influences the growth rate of <em>E.coli</em>. Therefore</p>
| + | |
- | <img src="/wiki/images/0/00/HkumodelEq7.gif" width="500" height="69"> (4.3)
| + | |
- | where n is the
| + | |
- | nutrient concentration. <div align="left">
| + | |
- | <blockquote>
| + | |
- | <blockquote>
| + | |
- | <div align="left"></div>
| + | |
- | </blockquote>
| + | |
- | </blockquote>
| + | |
- | </div>
| + | |
- | <blockquote><blockquote><div align="left" class="style27">
| + | |
- | <div align="left"><strong><a name="F7" id="F7"></a>Fig. 7 The growth rate relates to nutrient concentration</strong></div>
| + | |
- | </div>
| + | |
- | </blockquote>
| + | |
- | </blockquote>
| + | |
- | <p>For the nutrient, we made an assumption that the amount of nutrient consumed were proportional to the amount of cell increasing. Taking account of the nutrient diffusion, we had</p>
| + | |
- | <div align="left"><img src="/wiki/images/5/58/Modelling_pic12.JPG" width="500" height="58" /> (4.4) </div>
| + | |
- | <span class="style26">where <em>k</em> was the ratio that nutrient converts to cell mass, Dn is nutrient diffusion coefficient which is about that of small molecule[<a href="*ref">7</a>] . </span>
| + | |
- | <p>We used several possible forms of function <em>Dρ</em>(<em>h</em>)(see <a href="#Drho">Results Section2</a>). The results showed that if the cell diffusion coefficient decreases fast near the AHL density threshold, the pattern came out as a multiple-ring one(<a href="#Drho">Results Section2 (a),(e)</a>). On the contrary, there was only one-ring pattern. </p>
| + | |
- | <p>Therefore, in order to to make this curve <em>Dρ</em>(<em>h</em>) decreasing sharply near the threshold, it followed a prediction that we can get a multiple-ring pattern by making an auto-activate genetic circuit which the combination of LuxR and AHL can activate the expression level of itself</span>. </p>
| + | |
- | <div align="center">
| + | |
- | <p><img src="/wiki/images/f/f4/Modelling_pic13.png" width="329" height="221" /> </p>
| + | |
- | <span class="style27">Fig.8</span> The designed genetic circuit for predicted pattern</div>
| + | |
- | <p>Furthermore, we did some two-spot patterns which initially have two points of <em>E.coli</em> cell, so as to compare with the experiments culture (<a href="#result3">Results Section3</a>). </p> <p align="left"><a href="#top">[Back to Top]</a></p>
| + | |
- | <p> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p><p class="style7"> </p>
| + | |
- | <h3 align="left"><strong><a name="5" id="5"></a><span class="style7">Modeling Result</span></strong><span class="style7">s</span></h3>
| + | |
- | <p> In the simulation, we tried different values of undetermined parameters which were possible to change in experiments, to see how they influenced the pattern. Generally, we can vary the parameters of cell growth and cell motility which, in experiments, are easy to change. So we list the results of varying several parameters in the cell growth part and cell motility part. </p>
| + | |
- | <p><a href="#resg">Cell Growth</a></span></p>
| + | |
- | <ul>
| + | |
- | <li><a href="#res1">Maximum growth rate <em>γ</em>0</a></li>
| + | |
- | <li><a href="#res2"> Initial nutrient concentration ni</a></li>
| + | |
- | <li><em class="style26"><a href="#res3">κ</a></em></li>
| + | |
- | <li><a href="#res4">k</a></li>
| + | |
- | </ul>
| + | |
- | <p><a href="#Drho">Cell movement</a></span></p>
| + | |
- | <p><a href="#result3">Multiple initial Spots</a></p>
| + | |
- | <p><a name="resg"></a>1. Cell Growth</p>
| + | |
- | <p>In the cell growth term, we considered the growth rate was related to nutrient concentration. When the nutrient was consumed by the cell, the grow rate of the cell would decrease (<a href="#F7">Fig. 7</a>). There was a maximum growth rate <em>γ</em>0, when the nutrient was rich. The parameter <em>κ </em>described the sharp of this curve(<a href="#F7">Fig. 7</a>). The larger <em>κ</em> gave us more smooth increasing curve. And we made an assumption that one unit of nutrient would change to cell number with a ratio k. Also in the initial condition, the nutrient concentration ni can influence the patterns. Therefore, the effects of all the four parameters were studied in our model.</p>
| + | |
- | <p align="center"><a name="res1"></a><img src="/wiki/images/b/b7/Modelnew3_v2.PNG" width="541" height="441" /></p>
| + | |
- | <p>Above reuslts indicated that, the faster cell growth (larger <em>γ0 </em>and smaller doubling time) formed a smaller and a little more unclear ring pattern. And the inner ring diameter would become a litter more large when the growth rate increased. </p>
| + | |
- | <div align="center"><a name="res2"></a><img src="/wiki/images/6/6d/Modelnew4.png" width="535" height="441" /></span> </div>
| + | |
- | <p>From above figures, it was found that the initial nutrient concentration ni had little influence to the pattern, especially when it was large. The only effect we observed was that smaller initial nutrient concentration ni made the ring slightly wider and more clear.</p>
| + | |
- | <div align="center"><a name="res3"></a><img src="/wiki/images/6/6c/Modelnew5.png" width="543" height="444" /> </div>
| + | |
- | <p>Here, the value of <em>κ </em>was related to the initial nutrient concentration ni. When initial nutrient concentration ni was fixed, a smaller <em>κ </em>parameter gave us the similar results with that of faster cell growth. </p>
| + | |
- | <div align="center"><a name="res4"></a><img src="/wiki/images/5/51/Modelnew6.png" width="545" height="447" /></div>
| + | |
- | <p>When we increased the value of <em>k</em>, the patterns did not change a lot, but only became a little more clearly.</p>
| + | |
- | <p>In conclusion, the simulation results showed that the parameters of maximum growth rate <em>γ0 </em>and <em>κ</em> had a more important role on the ring-like pattern. And the other two parameters <em>k </em>and ni did not influence the pattern much. </p>
| + | |
- | <p> </p>
| + | |
- | <p>2. Cell Motility D<em>ρ</em>(h)</p>
| + | |
- | <p><a name="Drho" id="Drho"></a>Forms of D<em>ρ</em>(h)</p>
| + | |
- | <p>As <em>Dρ</em>(<em>h</em>) was a decreasing function of <em>h</em>, the possible formed of it can be</p>
| + | |
- | <table width="200" border="1">
| + | |
- | <tr>
| + | |
- | <td><div align="center"><a href="https://2008.igem.org/Team:iHKU/modeling/movie#a"><img src="/wiki/images/e/e4/Modelnew7.JPG" width="180" height="220" /></a></div></td>
| + | |
- | <td><a href="https://2008.igem.org/Team:iHKU/modeling/movie#b"><img src="/wiki/images/6/67/Modelnew8.JPG" width="180" height="220" /></a></td>
| + | |
- | <td><a href="https://2008.igem.org/Team:iHKU/modeling/movie#c"><img src="/wiki/images/3/31/Modelnew9.JPG" width="180" height="220" /></a></td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | <table width="573" border="1">
| + | |
- | <tr>
| + | |
- | <td width="184" height="232" class="style26"><a href="https://2008.igem.org/Team:iHKU/modeling/movie#d"><img src="/wiki/images/9/97/Modelnew10.JPG" width="180" height="220" /></a></td>
| + | |
- | <td width="373" class="style26"><a href="https://2008.igem.org/Team:iHKU/modeling/movie#e"><img src="https://static.igem.org/mediawiki/2008/5/5f/Modelnew11.JPG" width="180" height="220" /></a></td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | <p><a href="https://2008.igem.org/Team:iHKU/modeling/movie">Click graph to see movie!~(Line 1 left to right a, b, c; Line 2 left to right d ,e )</a> </p>
| + | |
- | <p>The above movies showed that if the cell diffusion coefficient decreases fast near the AHL density threshold, the pattern came out as a multiple-ring one(<a href="https://2008.igem.org/Team:iHKU/modeling/movie#a">Results Section2 (a),(e)</a>). On the contrary, there was only one-ring pattern<a href="https://2008.igem.org/Team:iHKU/modeling/movie#b">(Results Section2 (b),(c),(d))</a>. </span> </p>
| + | |
- | <p> </p>
| + | |
- | <p><a name="result3" id="result3"></a>3. Mulitple initial spots</p>
| + | |
- | <p>With the initial conditions of two or more spots, we obtained the below funny patterns which are amazing similar with that of experiments<a href="/Team:iHKU/result">(results)</a>.</p>
| + | |
- | <p align="center"><img src="/wiki/images/8/85/Modelnew12.png" width="384" height="508" /></p>
| + | |
- | <p><a name="ref" id="ref"></a>Reference:</p>
| + | |
- | <ul>
| + | |
- | <li class="style25">[1] P.K.Pathria, <em>Statistical Mechanics</em> (Pergamon Press, Headington Hill Hall, Oxford; 1972)</li>
| + | |
- | <li class="style25">[2] Howard C.Berg, <em>Random Walks in Biology</em> (Princeton University Press, Princeton, Hew Jersey; 1993)</li>
| + | |
- | <li class="style25">[3] Nikhil Mittal, et al, Proc Natl Acad Sci <strong>100</strong>, 13259 (2003)</li>
| + | |
- | <li class="style25">[4] R. A. Fisher, Ann. Eugenics <strong>7</strong>, 353 (1937)</li>
| + | |
- | <li class="style25">[5] A.H.Bokhari, et al., Nonlinear Analysis (In Press)</li>
| + | |
- | <li class="style25">[6]Basu S, et al., Nature <strong>434</strong>, 1130(2005)</li>
| + | |
- | <li class="style25">[7]J.W. Costerton, Naomi Balaban,<em> Control of Biofilm Infections by Signal Manipulation</em> (Springer,2008)</li>
| + | |
- | </ul>
| + | |
- | <p><a href="#top">[Back to Top]</a></p> </td>
| + | |
- | <td width="10%"> </td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- |
| + | |
- |
| + | |
- | </div>
| + | |
- |
| + | |
- | <div id="footer1"></div>
| + | |
- | </div>
| + | |
- | <div id="rightside">
| + | |
- |
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </html>
| + | |
- | <html>
| + | |