Team:Paris/Modeling/BOB
From 2008.igem.org
(→Dynamics of HSL) |
(→Parameters summary) |
||
Line 146: | Line 146: | ||
== Parameters summary == | == Parameters summary == | ||
+ | IN CONSTRUCTION | ||
+ | |||
+ | |||
+ | {| | ||
+ | |- style="background: #649CD7;" | ||
+ | ! colspan="8" style="background: #649CD7;" | Parameter Table | ||
+ | |- style="background: #649CD7; text-align: center;" | ||
+ | | Parameter | ||
+ | | Parameter in code (cell i) | ||
+ | | Meaning | ||
+ | | Original Value | ||
+ | | Normalized Value | ||
+ | | Unit | ||
+ | | Source | ||
+ | | Comments | ||
+ | |||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>FliA</sub> | ||
+ | | g[1 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>FliA</sub> | ||
+ | | B(1,i) | ||
+ | | FlhDC activation coefficient | ||
+ | | 50 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β'<sub>FliA</sub> | ||
+ | | b(1,i) | ||
+ | | FliA activation coefficient | ||
+ | | 0 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>FP1</sub> | ||
+ | | g[2 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>FP1</sub> | ||
+ | | B(2,i) | ||
+ | | FlhDC activation coefficient | ||
+ | | 1200 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β'<sub>FP1</sub> | ||
+ | | b(2,i) | ||
+ | | FliA activation coefficient | ||
+ | | 250 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>FP2</sub> | ||
+ | | g[3 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>FP2</sub> | ||
+ | | B(3,i) | ||
+ | | FlhDC activation coefficient | ||
+ | | 150 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β'<sub>FP2</sub> | ||
+ | | b(3,i) | ||
+ | | FliA activation coefficient | ||
+ | | 300 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>FP3</sub> | ||
+ | | g[4 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>FP3</sub> | ||
+ | | B(4,i) | ||
+ | | FlhDC activation coefficient | ||
+ | | 100 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β'<sub>FP3</sub> | ||
+ | | b(4,i) | ||
+ | | FliA activation coefficient | ||
+ | | 350 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>lasI</sub> | ||
+ | | g[4 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>lasI</sub> | ||
+ | | B(4,i) | ||
+ | | FlhDC activation coefficient | ||
+ | | 100 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β'<sub>lasI</sub> | ||
+ | | b(4,i) | ||
+ | | FliA activation coefficient | ||
+ | | 350 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>HSL<sub>int</sub></sub> <br> <br> | ||
+ | | g[5 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |β<sub>HSL<sub>int</sub></sub> <br> <br> | ||
+ | | B(5,i) | ||
+ | | Production rate | ||
+ | | 0,01 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[2]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |δ<sub>int</sub> | ||
+ | | D(1,i) | ||
+ | | Diffusion rate in the cell | ||
+ | | 2 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[2]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>HSL<sub>ext</sub></sub> <br> <br> | ||
+ | | g[6 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |δ<sub>ext</sub> | ||
+ | | D(2,i) | ||
+ | | Diffusion rate out off the cell | ||
+ | | 2 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[2]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>tetR mRNA</sub> | ||
+ | | g[6 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |ρ | ||
+ | | R(i) | ||
+ | | Maximal contribution to tetR in the presence of saturating amounts of HSL | ||
+ | | 20 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[2]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |θ | ||
+ | | 0(i) | ||
+ | | Ratio between mRNA and protein lifetimes | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[2]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |γ<sub>flhDC</sub> | ||
+ | | g[8 + 8 x (i-1)] | ||
+ | | Degradation rate | ||
+ | | 1 | ||
+ | | | ||
+ | | [[Team:Paris/Modeling/linear_approach#Bibliography|[1]]] | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |τ | ||
+ | | T(i) | ||
+ | | Threshold for tetR repression | ||
+ | | (20000) | ||
+ | | | ||
+ | | lab | ||
+ | | | ||
+ | | | ||
+ | |- style="background: #dddddd;" | ||
+ | | style="background: #D4E2EF;" |∆ | ||
+ | | Pa(i) | ||
+ | | Promoter activity without the repressor | ||
+ | |(100) | ||
+ | | | ||
+ | | lab | ||
+ | | | ||
+ | | | ||
+ | |} | ||
= Results = | = Results = |
Revision as of 17:55, 27 August 2008
Introduction
Steps modeledHere is a quick summary of the step we decided to interpret mathematically:
Establishing the modelPopulation evolution
FIFO Temporal Order ModuleSteps involved
Mathematical model
DiscussionNormalization
If we set [fliA] = 1 and [flhDC] = 1, and we solve, we obtain : Setting the equilibrium value to 1 corresponds to setting
With an input of flhDC equal to 1, the solution of the differential equation is: And the condition on the equilibrium imposes
Which gene goes were?
Synchronization ModuleSteps involved
Mathematical ModelDynamics of HSLFirst and foremost, HSL is the key element in the synchronization process: we used a diffusive specie in order to balance a value between cells. Thus, the HSL concentration denoted [HSL] become this "shared" value, the outside medium concentration denoted [HSLext] being an intermediate value. We use the classical osmosis expression: diffusion term = η * ( [HSL] - [HSLext] ) is the diffusion rate expressed in time-1.
To model the HSL production, we were at first inspired by [2] where it is described as being linear: β * [LasI] where β is a given constant value. However, the results presented in this study were introduced as only being theoretical so we chose to model the creation of HSL by a Michaelis Menten expression (in fact, it can be seen as a Hill expression where the Hill parameter is set to 1 because of the fact that LasI seems to be a monomeric enzyme). The final expression isHere, is expressed in the concentration unit, and in the concentration unit by time unit. It is important to note that we took into account the fact that lasR/(lasR linked to HSL) was a function of HSL. However, we assumed that the fraction of HSL bound to lasR would not influence HSL concentration; this is the reason why, no “degradation due to binding term” appears in the HSL model. Dynamics of HSLextThe evolution of HSLext may be described with three terms. First of all, there is a dilution rate, Drenewal, due to the renewal of the chemostat. There is the usual degradation rate,γ[HSL]ext ). Which gives where TetR=f(HSL)
Oscillations ModuleFlhDC = f(TetR) For this last step, since we have not found any article indicating that we could simplify the model by using a linear function. Then, we chose a complete Hill function to describe the dynamics of flhDC: Parameters summaryIN CONSTRUCTION
ResultsBibliographyMuch of our inspiration comes from four articles to which we shall refer in the next subsections :
|