Team:Valencia/Project/Lab work/2 experiments
From 2008.igem.org
Line 65: | Line 65: | ||
Additional increases in temperature were observed after long incubation times (xx hours). This might indicate that there is enough oxygen to allow uncoupling effects on the active respiratory transport chain. | Additional increases in temperature were observed after long incubation times (xx hours). This might indicate that there is enough oxygen to allow uncoupling effects on the active respiratory transport chain. | ||
- | <h3> | + | <h3> Growth Kinetics </h3> |
- | Besides monitoring temperature evolution, we also compared the growth of the cultures. For this purpose, we measured O.D. of the cultures. O.D. was measured every ninety minutes for a nine | + | Besides monitoring temperature evolution, we also compared the growth rate of the cultures. For this purpose, we measured O.D. of the cultures. O.D. was measured every ninety minutes for a nine hour period. We carried out this experiment under both normal culture conditions ( Erlenmeyer flasks shaken at 30ºC ) and with our thermally isolated LCCs. |
This measurement was useful in order to determine the [[Team:Valencia/Project/Modeling#Black box model of temperature increase produced by thermogenin | growing parameters used in the modeling]] of our system. Culture growth characterization through O.D. indirectly confirmed the expression and functional activity of UCP1. As expected, mutant strains (Gly175Δ and Gly76Δ) exhibited a delayed growth kinetics indicating that uncoupling activity was present. UCP- and UCP+ grew faster.The former does not produce functional thermogenine whereas the later is not functional in absence of fatty acids. These results, indicating the expression of active thermogenine, confirm those on temperature increases we found with the LCC. | This measurement was useful in order to determine the [[Team:Valencia/Project/Modeling#Black box model of temperature increase produced by thermogenin | growing parameters used in the modeling]] of our system. Culture growth characterization through O.D. indirectly confirmed the expression and functional activity of UCP1. As expected, mutant strains (Gly175Δ and Gly76Δ) exhibited a delayed growth kinetics indicating that uncoupling activity was present. UCP- and UCP+ grew faster.The former does not produce functional thermogenine whereas the later is not functional in absence of fatty acids. These results, indicating the expression of active thermogenine, confirm those on temperature increases we found with the LCC. |
Revision as of 11:35, 29 October 2008
2.-Demonstration that thermogenin-expressing yeast strains can heat their own broth medium.
Materials
In our experiments we worked with the the following Saccharomyces cerevisiae strains kindly handed by [http://www.cbm.uam.es/mitolab/fichapersonal.aspx?idpersona=6 Eduardo Rial] :
- UCP+ : UCP1 gene with Gal7 promoter.
- UCP- : UCP1 antisense gene with Gal7 promoter. It is used as control strain.
- Gly175Δ : UCP1 mutant sequence, Glycine 175 has been deleted.
- Gly76Δ : UCP1 mutant sequence, Glycine 76 has been deleted. These two strains have increased uncoupling activity and do not need fatty acids to be functional.
We used plasmid pYeDP as our vector in Saccharomyces cerevisiae.
Method of culturing UCP1-producing yeast strains for heat production
Each of our experiments entails the following steps:
- We prepare a 30ml inoculum for each strains in 100ml Erlenmeyer flasks with SD medium. We leave it overnight in the 28ºC stove.
- We prepare a second inoculum for each strain, this time 100ml SP medium in 1L Erlenmeyer flasks. The initial O.D. of this second inoculum is adjusted to 0.2. We leave it several hours in the 28ºC stove.
The objective of this two-step protocol is to be able to start the experiment with a higher O.D. in a medium with little or no glucose. In summary: first, we grow our strains in a liquid medium with glucose (SD medium), in which they have a better growth rate. Second, we use SP medium because it has a really small amount of glucose.
- We start the experiment in the LCCs with a volume of 100ml of SP medium, adjusted to O.D. of 0.6. We heat the medium up to aproximately 28ºC inside the LCC.
- We add 1% galactose to each of the LCCs containing the four yeast strains. This sugar is the UCP1 gene Gal7 promoter inductor and it is therefore needed for the production of UCP1.
- We monitor the temperature evolution in the LCCs thanks to our LCC system.
Experiment results
Conclusions The two mutants ... produced a significant increase in temperature after xx hours,indicating that thermogenin is active and able to heat up a culture in a measurable way.
Additional increases in temperature were observed after long incubation times (xx hours). This might indicate that there is enough oxygen to allow uncoupling effects on the active respiratory transport chain.
Growth Kinetics
Besides monitoring temperature evolution, we also compared the growth rate of the cultures. For this purpose, we measured O.D. of the cultures. O.D. was measured every ninety minutes for a nine hour period. We carried out this experiment under both normal culture conditions ( Erlenmeyer flasks shaken at 30ºC ) and with our thermally isolated LCCs.
This measurement was useful in order to determine the growing parameters used in the modeling of our system. Culture growth characterization through O.D. indirectly confirmed the expression and functional activity of UCP1. As expected, mutant strains (Gly175Δ and Gly76Δ) exhibited a delayed growth kinetics indicating that uncoupling activity was present. UCP- and UCP+ grew faster.The former does not produce functional thermogenine whereas the later is not functional in absence of fatty acids. These results, indicating the expression of active thermogenine, confirm those on temperature increases we found with the LCC.
Strains growth equations:
Troubleshooting
In order to establish the final conditions and protocols, we have gone through many different experiments.
- Low shaking speed, large volume and low initial O.D.
- We did not obtain any encouraging results.
- Besides, we obtained weird oscillations in most of our experiments (as described in the LCC troubleshooting).
At the beginning these were the conditions for our LCC. However, since the induction should be done at higher cell densities, we had to wait three hours before induction.
- Media variations
- YPKAc Medium : In this medium containing acetate, yeast is supposed to only respire rather than ferment. We tried it just in case the problem was that electron transport chain was inhibited.
- Palmitate: although our Gly175Δ and Gly76Δ mutants do not need this compound for thermogenine activation, we tried and added it in case it made any difference for UCP+ strain. We tried and added it to both SP medium and YPKAc medium.
- We did not obtain any encouraging results either.
As we were not obtaining any results, we desperately tried other culture broths.
- Increased shaking speed and reduced volume
- We obtained temperature increases for the first time.
- Besides, the weird oscillations observed before disappeared.
In other to allow proper respiration of the yeast culture in the LCCs, we tried to increase the speed of shaker. Additionally, we reduced the volume for the yeast culture to have more oxygen available.
- Higher O.D.
- In order to do so, we designed the two inoculum protocol described above. With this protocol, we intend to reach an high O.D. without having too much glucose. We used SP medium for the inoculum in order to avoid adding too much glucose (SD medium is glucose rich) to the LCCs.
- We obtained temperature increases and we were able to reproduce it.
- We tried and began the experiment with an even higher O.D. but we have not obtained the encouraging results yet.
Instead of starting the experiment at a lower O.D. and waiting several hours before inducing, we thought it would be better to start at a higher O.D. This way, we would be sure that the O.D. at the time of induction was the same for the four strains.
- Initial temperature
- We put a lot more effort in starting at the same temperature every time.
- Nevertheless, this temperature inside the calorimeter depends on the room temperature. And room temperature can significantly change depending on the outside temperature.
Even after obtaining results showing that mutants increased the temperature of the culture, we obtained weird results since none of the strains behaved as wished. We realized the disturbing factor of those experiments was the initial temperature of the culture, higher than that corresponding to the successful experiments.
Here you can see a summary of our experiments and the different conditions for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|