Team:UC Berkeley
From 2008.igem.org
JCAnderson (Talk | contribs) |
JCAnderson (Talk | contribs) |
||
Line 49: | Line 49: | ||
'''In an effort to optimize the manufacture of parts, we have designed Clonebots - a collection of devices and strains that aid in the synthesis and analysis of new parts. Building engineered biological systems requires cumbersome laboratory protocols that provide a significant impediment to the advancement of our field. However, there are some unit operations that can be cost effectively automated at scale in the laboratory such as small volume liquid transfers, fluorescence measurements, and heating/cooling steps. If we can reduce all synthesis and analysis methodology to these simple operations, it will be readily possible to automate all aspects of synthetic biology research - a cost-effective, BioCAD-friendly approach to large-scale projects. The Clonebots project is an effort to solve these basic technical problems of synthetic biology with the substrate of our own medium - a live cell. We initiated the construction of several genetic devices for protein purification and standard assembly. At the jamboree we will focus on two successfully constructed devices designed to automate sythetic biology: a genetic self-lysis device and a Gateway cloning device.''' | '''In an effort to optimize the manufacture of parts, we have designed Clonebots - a collection of devices and strains that aid in the synthesis and analysis of new parts. Building engineered biological systems requires cumbersome laboratory protocols that provide a significant impediment to the advancement of our field. However, there are some unit operations that can be cost effectively automated at scale in the laboratory such as small volume liquid transfers, fluorescence measurements, and heating/cooling steps. If we can reduce all synthesis and analysis methodology to these simple operations, it will be readily possible to automate all aspects of synthetic biology research - a cost-effective, BioCAD-friendly approach to large-scale projects. The Clonebots project is an effort to solve these basic technical problems of synthetic biology with the substrate of our own medium - a live cell. We initiated the construction of several genetic devices for protein purification and standard assembly. At the jamboree we will focus on two successfully constructed devices designed to automate sythetic biology: a genetic self-lysis device and a Gateway cloning device.''' | ||
- | + | ---- | |
- | '''Navigation:''' For a complete tour of our wiki, follow the Start arrow below. If you want to jump to the devices that worked, follow the two buttons at the top of the page. To find our notebooks or any other specific part of our wiki, follow the menu | + | '''Navigation:''' For a complete tour of our wiki, follow the Start arrow below. If you want to jump straight to the devices that worked, follow the two buttons at the top of the page. To find our notebooks or any other specific part of our wiki, follow the menu at top. |
<br> | <br> | ||
<html> | <html> |
Revision as of 23:08, 29 October 2008
In an effort to optimize the manufacture of parts, we have designed Clonebots - a collection of devices and strains that aid in the synthesis and analysis of new parts. Building engineered biological systems requires cumbersome laboratory protocols that provide a significant impediment to the advancement of our field. However, there are some unit operations that can be cost effectively automated at scale in the laboratory such as small volume liquid transfers, fluorescence measurements, and heating/cooling steps. If we can reduce all synthesis and analysis methodology to these simple operations, it will be readily possible to automate all aspects of synthetic biology research - a cost-effective, BioCAD-friendly approach to large-scale projects. The Clonebots project is an effort to solve these basic technical problems of synthetic biology with the substrate of our own medium - a live cell. We initiated the construction of several genetic devices for protein purification and standard assembly. At the jamboree we will focus on two successfully constructed devices designed to automate sythetic biology: a genetic self-lysis device and a Gateway cloning device.
Navigation: For a complete tour of our wiki, follow the Start arrow below. If you want to jump straight to the devices that worked, follow the two buttons at the top of the page. To find our notebooks or any other specific part of our wiki, follow the menu at top.
We would like to thank our generous sponsors: