Team:Paris/Modeling/Implementation
From 2008.igem.org
(Difference between revisions)
(→Parameters Finder for our Example) |
(→All Algorithms) |
||
Line 56: | Line 56: | ||
== All Algorithms == | == All Algorithms == | ||
+ | <div style="text-align: center"> | ||
{{Paris/Toggle|Prior for Characterization|Team:Paris/Modeling/More_Algo_Prior}} | {{Paris/Toggle|Prior for Characterization|Team:Paris/Modeling/More_Algo_Prior}} | ||
{{Paris/Toggle|Parameters Finders|Team:Paris/Modeling/More_Algo_Finder}} | {{Paris/Toggle|Parameters Finders|Team:Paris/Modeling/More_Algo_Finder}} | ||
{{Paris/Toggle|The Global Model|Team:Paris/Modeling/More_Algo_Char}} | {{Paris/Toggle|The Global Model|Team:Paris/Modeling/More_Algo_Char}} | ||
+ | </div> | ||
== To go further == | == To go further == |
Revision as of 15:59, 28 October 2008
Implementation
[Back to "Workflow on an Example"] We use Matlab for all implementations.
Parameters Finder Programsthe datasThe experimental datas consist typically in two tables, X_data (various concentrations of the transcription factor) and Y_data (corresponding output values).
Parameters Finder for our ExampleWe just show hereby the annoted program find_FP.m that is used to estimate, for instance, the parameters in :
function optimal_parameters = find_FP(X_data, Y_data, initial_parameters) % gives the 'best parameters' involved in f4, f5, f6, f7 or f8 % with FlhDC = 0 or FliA = 0 by least-square optimisation % X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally % controled) % Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8 % corresponding of the X_data % initial_parameters = values of the parameters proposed by the literature % or simply guessed % = [beta, K -> (K)/(coef), n] function output = expr_pProm(parameters, X_data) for k = 1:length(X_data) output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3)); end end options = optimset('LevenbergMarquardt','on','TolX',1e-10,... 'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); % options for the function lsqcurvefit optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pProm(parameters, X_data),... initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); % search for the fittest parameters, between 1/10 and 10 times the initial % parameters end All Algorithms↓ Prior for Characterization ↑
↓ Parameters Finders ↑
↓ The Global Model ↑
To go further |