Team:Paris/Modeling/f4

From 2008.igem.org

(Difference between revisions)
(New page: Strain ΔflhDC and ΔfliA. We assume that the logical gate is a ''SUM'' (see our project, so that <center> f4(flhDC,fliA) = f4(flhDC,0) + f4(0,fliA) </center> [[I...)
 
(18 intermediate revisions not shown)
Line 1: Line 1:
-
Strain ΔflhDC and ΔfliA.
+
{{Paris/Menu}}
-
We assume that the logical gate is a ''SUM'' (see [[Team:Paris/Project|our project]], so that
+
{{Paris/Header|Method & Algorithm : &#131;4}}
-
<center> f4(flhDC,fliA) = f4(flhDC,0) + f4(0,fliA) </center>
+
<center> = act_''pFliA'' </center>
 +
<br>
-
[[Image:f4DC.png]]
+
[[Image:f4DCA.png|thumb|Specific Plasmid Characterisation for &#131;4]]
 +
 
 +
According to the characterization plasmid (see right) and to our modeling, in the '''exponential phase of growth''', at the steady state,
 +
 
 +
we have ''' [''FlhDC'']<sub>''real''</sub> = {coef<sub>''flhDC''</sub>} &#131;1([aTc]<sub>i</sub>) '''
 +
and ''' [''FliA'']<sub>''real''</sub> = {coef<sub>''fliA''</sub>} &#131;2([arab]<sub>i</sub>) '''
 +
 
 +
but we use ''' [aTc]<sub>i</sub> = Inv_&#131;1( [''FlhDC''] ) '''
 +
and        ''' [arab]<sub>i</sub> = Inv_&#131;2( [''FliA''] ) '''
 +
 
 +
So, at steady-states,
 +
 
 +
[[Image:F4.jpg|center]]
 +
 
 +
we use this analytical expression to determine the parameters :
 +
 
 +
<div style="text-align: center">
 +
{{Paris/Toggle|Table of Values|Team:Paris/Modeling/More_f4_Table}}
 +
</div>
 +
 
 +
<div style="text-align: center">
 +
{{Paris/Toggle|Algorithm|Team:Paris/Modeling/More_f4_Algo}}
 +
</div>
 +
 
 +
Then, if we have time, we want to verify the expected relation
 +
 
 +
[[Image:SumpFliA.jpg|center]]
 +
 
 +
<br>
 +
 
 +
<center>
 +
[[Team:Paris/Modeling/Implementation| <Back - to "Implementation" ]]| <br>
 +
[[Team:Paris/Modeling/Protocol_Of_Characterization| <Back - to "Protocol Of Characterization" ]]|
 +
</center>

Latest revision as of 02:07, 30 October 2008

Method & Algorithm : ƒ4


= act_pFliA


Specific Plasmid Characterisation for ƒ4

According to the characterization plasmid (see right) and to our modeling, in the exponential phase of growth, at the steady state,

we have [FlhDC]real = {coefflhDC} ƒ1([aTc]i) and [FliA]real = {coeffliA} ƒ2([arab]i)

but we use [aTc]i = Inv_ƒ1( [FlhDC] ) and [arab]i = Inv_ƒ2( [FliA] )

So, at steady-states,

F4.jpg

we use this analytical expression to determine the parameters :

↓ Table of Values ↑


param signification unit value comments
(fluorescence) value of the observed fluorescence au need for 20 mesures with well choosen values of [aTc]i
and for 20 mesures with well choosen values of [arab]i
and 5x5 measures for the relation below?
conversion conversion ratio between
fluorescence and concentration
↓ gives ↓
nM.au-1 (1/79.429)
[GFP] GFP concentration at steady-state nM
γGFP dilution-degradation rate
of GFP(mut3b)
↓ gives ↓
min-1 0.0198 Time Cell Division : 35 min.
ƒ4 activity of
pFliA with RBS E0032
nM.min-1



param signification
corresponding parameters in the equations
unit value comments
β18 total transcription rate of
FlhDC><pFliA with RBS E0032
β18
nM.min-1
(K1/{coefflhDC}) activation constant of FlhDC><pFliA
K1
nM
n1 complexation order of FlhDC><pFliA
n1
no dimension
β23 total transcription rate of
FliA><pFliA with RBS E0032
β23
nM.min-1
(K7/{coeffliA}) activation constant of FliA><pFliA
K7
nM
n10 complexation order of FliA><pFliA
n7
no dimension
↓ Algorithm ↑


find_ƒ4

Then, if we have time, we want to verify the expected relation

SumpFliA.jpg


<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |